ﻻ يوجد ملخص باللغة العربية
Power storage devices are shown to increase their efficiency if they are designed by using quantum systems. We show that the average power output of a quantum battery based on a quantum interacting spin model, charged via a local magnetic field, can be enhanced with the increase of spin quantum number. In particular, we demonstrate such increment in the power output when the initial state of the battery is prepared as the ground or canonical equilibrium state of the spin-j XY model and the bilinear-biquadratic spin-j Heisenberg chain (BBH) in presence of the transverse magnetic field. Interestingly, we observe that in the case of the XY model, a trade-off relation exists between the range of interactions in which the power increases and the dimension while for the BBH model, the improvements depend on the phase in which the initial state is prepared. Moreover, we exhibit that such dimensional advantages persist even when the battery-Hamiltonian has some defects or when the initial battery-state is prepared at finite temperature.
Previous research on nonlinear oscillator networks has shown that chaos synchronization is attainable for identical oscillators but deteriorates in the presence of parameter mismatches. Here, we identify regimes for which the opposite occurs and show
Current quantum devices execute specific tasks that are hard for classical computers and have the potential to solve problems such as quantum simulation of material science and chemistry, even without error correction. For practical applications it i
We design a quantum battery made up of bosons or fermions in an ultracold atom setup, described by Fermi-Hubbard (FH) and Bose-Hubbard (BH) models respectively. We compare the performance of bosons as well as fermions and check which can act more eff
The time evolution of one- and two-dimensional discrete-time quantum walk with increase in disorder is studied. We use spatial, temporal and spatio-temporal broken periodicity of the unitary evolution as disorder to mimic the effect of disordered/ran
Tomography of a quantum state is usually based on positive operator-valued measure (POVM) and on their experimental statistics. Among the available reconstructions, the maximum-likelihood (MaxLike) technique is an efficient one. We propose an extensi