ترغب بنشر مسار تعليمي؟ اضغط هنا

Revisiting Light Field Rendering with Deep Anti-Aliasing Neural Network

142   0   0.0 ( 0 )
 نشر من قبل Gaochang Wu
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The light field (LF) reconstruction is mainly confronted with two challenges, large disparity and the non-Lambertian effect. Typical approaches either address the large disparity challenge using depth estimation followed by view synthesis or eschew explicit depth information to enable non-Lambertian rendering, but rarely solve both challenges in a unified framework. In this paper, we revisit the classic LF rendering framework to address both challenges by incorporating it with advanced deep learning techniques. First, we analytically show that the essential issue behind the large disparity and non-Lambertian challenges is the aliasing problem. Classic LF rendering approaches typically mitigate the aliasing with a reconstruction filter in the Fourier domain, which is, however, intractable to implement within a deep learning pipeline. Instead, we introduce an alternative framework to perform anti-aliasing reconstruction in the image domain and analytically show comparable efficacy on the aliasing issue. To explore the full potential, we then embed the anti-aliasing framework into a deep neural network through the design of an integrated architecture and trainable parameters. The network is trained through end-to-end optimization using a peculiar training set, including regular LFs and unstructured LFs. The proposed deep learning pipeline shows a substantial superiority in solving both the large disparity and the non-Lambertian challenges compared with other state-of-the-art approaches. In addition to the view interpolation for an LF, we also show that the proposed pipeline also benefits light field view extrapolation.



قيم البحث

اقرأ أيضاً

Inferring representations of 3D scenes from 2D observations is a fundamental problem of computer graphics, computer vision, and artificial intelligence. Emerging 3D-structured neural scene representations are a promising approach to 3D scene understa nding. In this work, we propose a novel neural scene representation, Light Field Networks or LFNs, which represent both geometry and appearance of the underlying 3D scene in a 360-degree, four-dimensional light field parameterized via a neural implicit representation. Rendering a ray from an LFN requires only a *single* network evaluation, as opposed to hundreds of evaluations per ray for ray-marching or volumetric based renderers in 3D-structured neural scene representations. In the setting of simple scenes, we leverage meta-learning to learn a prior over LFNs that enables multi-view consistent light field reconstruction from as little as a single image observation. This results in dramatic reductions in time and memory complexity, and enables real-time rendering. The cost of storing a 360-degree light field via an LFN is two orders of magnitude lower than conventional methods such as the Lumigraph. Utilizing the analytical differentiability of neural implicit representations and a novel parameterization of light space, we further demonstrate the extraction of sparse depth maps from LFNs.
The rendering procedure used by neural radiance fields (NeRF) samples a scene with a single ray per pixel and may therefore produce renderings that are excessively blurred or aliased when training or testing images observe scene content at different resolutions. The straightforward solution of supersampling by rendering with multiple rays per pixel is impractical for NeRF, because rendering each ray requires querying a multilayer perceptron hundreds of times. Our solution, which we call mip-NeRF (a la mipmap), extends NeRF to represent the scene at a continuously-valued scale. By efficiently rendering anti-aliased conical frustums instead of rays, mip-NeRF reduces objectionable aliasing artifacts and significantly improves NeRFs ability to represent fine details, while also being 7% faster than NeRF and half the size. Compared to NeRF, mip-NeRF reduces average error rates by 17% on the dataset presented with NeRF and by 60% on a challenging multiscale variant of that dataset that we present. Mip-NeRF is also able to match the accuracy of a brute-force supersampled NeRF on our multiscale dataset while being 22x faster.
110 - Chaoyang He , Ming Li 2019
The spatial anti-aliasing technique for line joins (intersections of the road segments) on vector maps is exclusively crucial to visual experience and system performance. Due to limitations of OpenGL API, one common practice to achieve the anti-alias ed effect is splicing multiple triangles at varying scale levels to approximate the fan-shaped line joins. However, this approximation inevitably produces some unreality, and the system rendering performance is not optimal. To circumvent these drawbacks, in this paper, we propose a simple but efficient algorithm which uses only two triangles to substitute the multiple triangles approximation and then renders a realistic fan-shaped curve with alpha operation based on geometrical relation computing. Our experiment shows it has advantages of a realistic anti-aliasing effect, less memory cost, higher frame rate, and drawing line joins without overlapping rendering. Our proposed spatial anti-aliasing technique has been widely used in Internet Maps such as Tencent Mobile Maps and Tencent Automotive Maps.
Accurate lane localization and lane change detection are crucial in advanced driver assistance systems and autonomous driving systems for safer and more efficient trajectory planning. Conventional localization devices such as Global Positioning Syste m only provide road-level resolution for car navigation, which is incompetent to assist in lane-level decision making. The state of art technique for lane localization is to use Light Detection and Ranging sensors to correct the global localization error and achieve centimeter-level accuracy, but the real-time implementation and popularization for LiDAR is still limited by its computational burden and current cost. As a cost-effective alternative, vision-based lane change detection has been highly regarded for affordable autonomous vehicles to support lane-level localization. A deep learning-based computer vision system is developed to detect the lane change behavior using the images captured by a front-view camera mounted on the vehicle and data from the inertial measurement unit for highway driving. Testing results on real-world driving data have shown that the proposed method is robust with real-time working ability and could achieve around 87% lane change detection accuracy. Compared to the average human reaction to visual stimuli, the proposed computer vision system works 9 times faster, which makes it capable of helping make life-saving decisions in time.
163 - Weiya Fan 2020
Fingerprint image denoising is a very important step in fingerprint identification. to improve the denoising effect of fingerprint image,we have designs a fingerprint denoising algorithm based on deep encoder-decoder network,which encoder subnet to l earn the fingerprint features of noisy images.the decoder subnet reconstructs the original fingerprint image based on the features to achieve denoising, while using the dilated convolution in the network to increase the receptor field without increasing the complexity and improve the network inference speed. In addition, feature fusion at different levels of the network is achieved through the introduction of residual learning, which further restores the detailed features of the fingerprint and improves the denoising effect. Finally, the experimental results show that the algorithm enables better recovery of edge, line and curve features in fingerprint images, with better visual effects and higher peak signal-to-noise ratio (PSNR) compared to other methods.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا