ﻻ يوجد ملخص باللغة العربية
Multi-hop reasoning has been widely studied in recent years to obtain more interpretable link prediction. However, we find in experiments that many paths given by these models are actually unreasonable, while little works have been done on interpretability evaluation for them. In this paper, we propose a unified framework to quantitatively evaluate the interpretability of multi-hop reasoning models so as to advance their development. In specific, we define three metrics including path recall, local interpretability, and global interpretability for evaluation, and design an approximate strategy to calculate them using the interpretability scores of rules. Furthermore, we manually annotate all possible rules and establish a Benchmark to detect the Interpretability of Multi-hop Reasoning (BIMR). In experiments, we run nine baselines on our benchmark. The experimental results show that the interpretability of current multi-hop reasoning models is less satisfactory and is still far from the upper bound given by our benchmark. Moreover, the rule-based models outperform the multi-hop reasoning models in terms of performance and interpretability, which points to a direction for future research, i.e., we should investigate how to better incorporate rule information into the multi-hop reasoning model. Our codes and datasets can be obtained from https://github.com/THU-KEG/BIMR.
One of the fundamental problems in Artificial Intelligence is to perform complex multi-hop logical reasoning over the facts captured by a knowledge graph (KG). This problem is challenging, because KGs can be massive and incomplete. Recent approaches
Knowledge graphs are essential for numerous downstream natural language processing applications, but are typically incomplete with many facts missing. This results in research efforts on multi-hop reasoning task, which can be formulated as a search p
Knowledge retrieval and reasoning are two key stages in multi-hop question answering (QA) at web scale. Existing approaches suffer from low confidence when retrieving evidence facts to fill the knowledge gap and lack transparent reasoning process. In
This paper considers the problem of spatiotemporal object-centric reasoning in videos. Central to our approach is the notion of object permanence, i.e., the ability to reason about the location of objects as they move through the video while being oc
Long text generation is an important but challenging task.The main problem lies in learning sentence-level semantic dependencies which traditional generative models often suffer from. To address this problem, we propose a Multi-hop Reasoning Generati