ﻻ يوجد ملخص باللغة العربية
The entropy principle shows that, for self-gravitating perfect fluid, the Einstein field equations can be derived from the extrema of the total entropy, and the thermodynamical stability criterion are equivalent to the dynamical stability criterion. In this paper, we recast the dynamical criterion for the charged self-gravitating perfect fluid in Einstein-Maxwell theory, and further give the criterion of the star with barotropic condition. In order to obtain the thermodynamical stability criterion, first we get the general formula of the second variation of the total entropy for charged perfect fluid case, and then obtain the thermodynamical criterion for radial perturbation. We show that these two stability criterion are the same, which suggest that the inherent connection between gravity and thermodynamic even when the electric field is taken into account.
We consider a static self-gravitating system consisting of perfect fluid with isometries of an $(n-2)$-dimensional maximally symmetric space in Lovelock gravity theory. A straightforward analysis of the time-time component of the equations of motion
It is shown that the dynamical evolution of linear perturbations on a static space-time is governed by a constrained wave equation for the extrinsic curvature tensor. The spatial part of the wave operator is manifestly elliptic and self-adjoint. In c
The interpretation of a family of electrovacuum stationary Taub-NUT-type fields in terms of finite charged perfect fluid disks is presented. The interpretation is mades by means of an inverse problem approach used to obtain disk sources of known solu
The asymptotic properties of self-similar spherically symmetric perfect fluid solutions with equation of state p=alpha mu (-1<alpha<1) are described. We prove that for large and small values of the similarity variable, z=r/t, all such solutions must
We consider the lagrangian of a self-interacting complex scalar field admitting generically Q-balls solutions. This model is extended by minimal coupling to electromagnetism and to gravity. A stationnary, axially-symmetric ansatz for the different fi