ترغب بنشر مسار تعليمي؟ اضغط هنا

Charged-spinning-gravitating Q-balls

216   0   0.0 ( 0 )
 نشر من قبل Brihaye Yves
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the lagrangian of a self-interacting complex scalar field admitting generically Q-balls solutions. This model is extended by minimal coupling to electromagnetism and to gravity. A stationnary, axially-symmetric ansatz for the different fields is used in order to reduce the classical equations. The system of non-linear partial differential equations obtained becomes a boundary value problem by supplementing a suitable set of boundary conditions. We obtain numerical evidences that the angular excitations of uncharged Q-balls, which exist in flat space-time, get continuously deformed by the Maxwell and the Einstein terms. The electromagnetic and gravitating properties of several solutions, including the spinning Q-balls, are emphasized.



قيم البحث

اقرأ أيضاً

We construct electrically charged Q-balls and boson stars in a model with a scalar self-interaction potential resulting from gauge mediated supersymmetry breaking. We discuss the properties of these solutions in detail and emphasize the differences t o the uncharged case. We observe that Q-balls can only be constructed up to a maximal value of the charge of the scalar field, while for boson stars the interplay between the attractive gravitational force and the repulsive electromagnetic force determines their behaviour. We find that the vacuum is stable with respect to pair production in the presence of our charged boson stars. We also study the motion of charged, massive test particles in the space-time of boson stars. We find that in contrast to charged black holes the motion of charged test particles in charged boson star space-times is planar, but that the presence of the scalar field plays a crucial role for the qualitative features of the trajectories. Applications of this test particle motion can be made in the study of extreme-mass ratio inspirals (EMRIs) as well as astrophysical plasmas relevant e.g. in the formation of accretion discs and polar jets of compact objects.
In general relativity, systems of spinning classical particles are implemented into the canonical formalism of Arnowitt, Deser, and Misner [1]. The implementation is made with the aid of a symmetric stress-energy tensor and not a 4-dimensional covari ant action functional. The formalism is valid to terms linear in the single spin variables and up to and including the next-to-leading order approximation in the gravitational spin-interaction part. The field-source terms for the spinning particles occurring in the Hamiltonian are obtained from their expressions in Minkowski space with canonical variables through 3-dimensional covariant generalizations as well as from a suitable shift of projections of the curved spacetime stress-energy tensor originally given within covariant spin supplementary conditions. The applied coordinate conditions are the generalized isotropic ones introduced by Arnowitt, Deser, and Misner. As applications, the Hamiltonian of two spinning compact bodies with next-to-leading order gravitational spin-orbit coupling, recently obtained by Damour, Jaranowski, and Schaefer [2], is rederived and the derivation of the next-to-leading order gravitational spin(1)-spin(2) Hamiltonian, shown for the first time in [3], is presented.
In the system of a gravitating Q-ball, there is a maximum charge $Q_{{rm max}}$ inevitably, while in flat spacetime there is no upper bound on $Q$ in typical models such as the Affleck-Dine model. Theoretically the charge $Q$ is a free parameter, and phenomenologically it could increase by charge accumulation. We address a question of what happens to Q-balls if $Q$ is close to $Q_{{rm max}}$. First, without specifying a model, we show analytically that inflation cannot take place in the core of a Q-ball, contrary to the claim of previous work. Next, for the Affleck-Dine model, we analyze perturbation of equilibrium solutions with $Qapprox Q_{{rm max}}$ by numerical analysis of dynamical field equations. We find that the extremal solution with $Q=Q_{{rm max}}$ and unstable solutions around it are critical solutions, which means the threshold of black-hole formation.
116 - Y. Brihaye , T. Delsate 2013
We consider a model involving a self-interacting complex scalar field minimally coupled to gravity and emphasize the cylindrically symmetric classical solutions. A general ansatz is performed which transforms the field equations into a system of diff erential equations. In the generic case, the scalar field depends on the four space-time coordinates. The underlying Einstein vacuum equations are worth studying by themselve and lead to numerous analytic results extending the Kasner solutions. The solutions of the coupled system are -static as well as stationnary- gravitating Q-tubes of scalar matter which deform space-time.
We present new regular solutions of Einstein-charged scalar field theory in a cavity. The system is enclosed inside a reflecting mirror-like boundary, on which the scalar field vanishes. The mirror is placed at the zero of the scalar field closest to the origin, and inside this boundary our solutions are regular. We study the stability of these solitons under linear, spherically symmetric perturbations of the metric, scalar and electromagnetic fields. If the radius of the mirror is sufficiently large, we present numerical evidence for the stability of the solitons. For small mirror radius, some of the solitons are unstable. We discuss the physical interpretation of this instability.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا