ﻻ يوجد ملخص باللغة العربية
The discretization of Gross-Pitaevskii equations (GPE) leads to a nonlinear eigenvalue problem with eigenvector nonlinearity (NEPv). In this paper, we use two Newton-based methods to compute the positive ground state of GPE. The first method comes from the Newton-Noda iteration for saturable nonlinear Schrodinger equations proposed by Liu, which can be transferred to GPE naturally. The second method combines the idea of the Bisection method and the idea of Newton method, in which, each subproblem involving block tridiagonal linear systems can be solved easily. We give an explicit convergence and computational complexity analysis for it. Numerical experiments are provided to support the theoretical results.
We present a suite of programs to determine the ground state of the time-independent Gross-Pitaevskii equation, used in the simulation of Bose-Einstein condensates. The calculation is based on the Optimal Damping Algorithm, ensuring a fast convergenc
Often in applications ranging from medical imaging and sensor networks to error correction and data science (and beyond), one needs to solve large-scale linear systems in which a fraction of the measurements have been corrupted. We consider solving s
In Wang et al. (J. Optim. Theory Appl., textbf{181}: 216--230, 2019), a class of effective modified Newton-tpye (MN) iteration methods are proposed for solving the generalized absolute value equations (GAVE) and it has been found that the MN iteratio
We develop in this work a numerical method for stochastic differential equations (SDEs) with weak second order accuracy based on Gaussian mixture. Unlike the conventional higher order schemes for SDEs based on It^o-Taylor expansion and iterated It^o
In this paper, we design a novel class of arbitrarily high-order structure-preserving numerical schemes for the time-dependent Gross-Pitaevskii equation with angular momentum rotation in three dimensions. Based on the idea of the scalar auxiliary var