ﻻ يوجد ملخص باللغة العربية
Representations in the form of Symmetric Positive Definite (SPD) matrices have been popularized in a variety of visual learning applications due to their demonstrated ability to capture rich second-order statistics of visual data. There exist several similarity measures for comparing SPD matrices with documented benefits. However, selecting an appropriate measure for a given problem remains a challenge and in most cases, is the result of a trial-and-error process. In this paper, we propose to learn similarity measures in a data-driven manner. To this end, we capitalize on the alphabeta-log-det divergence, which is a meta-divergence parametrized by scalars alpha and beta, subsuming a wide family of popular information divergences on SPD matrices for distinct and discrete values of these parameters. Our key idea is to cast these parameters in a continuum and learn them from data. We systematically extend this idea to learn vector-valued parameters, thereby increasing the expressiveness of the underlying non-linear measure. We conjoin the divergence learning problem with several standard tasks in machine learning, including supervised discriminative dictionary learning and unsupervised SPD matrix clustering. We present Riemannian gradient descent schemes for optimizing our formulations efficiently, and show the usefulness of our method on eight standard computer vision tasks.
In this paper, we develop a new classification method for manifold-valued data in the framework of probabilistic learning vector quantization. In many classification scenarios, the data can be naturally represented by symmetric positive definite matr
We study metric properties of symmetric divergences on Hermitian positive definite matrices. In particular, we prove that the square root of these divergences is a distance metric. As a corollary we obtain a proof of the metric property for Quantum J
In a number of disciplines, the data (e.g., graphs, manifolds) to be analyzed are non-Euclidean in nature. Geometric deep learning corresponds to techniques that generalize deep neural network models to such non-Euclidean spaces. Several recent paper
The Riemannian metric on the manifold of positive definite matrices is defined by a kernel function $phi$ in the form $K_D^phi(H,K)=sum_{i,j}phi(lambda_i,lambda_j)^{-1} Tr P_iHP_jK$ when $sum_ilambda_iP_i$ is the spectral decomposition of the foot po
Let $mathbb{C}^{ntimes n}$ be the set of all $n times n$ complex matrices. For any Hermitian positive semi-definite matrices $A$ and $B$ in $mathbb{C}^{ntimes n}$, their new common upper bound less than $A+B-A:B$ is constructed, where $(A+B)^dag$ den