ﻻ يوجد ملخص باللغة العربية
We present the first determination of the $x$-dependent pion gluon distribution from lattice QCD using the pseudo-PDF approach. We use lattice ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC Collaboration, at two lattice spacings $aapprox 0.12$ and 0.15~fm and three pion masses $M_piapprox 220$, 310 and 690 MeV. We use clover fermions for the valence action and momentum smearing to achieve pion boost momentum up to 2.29 GeV. We find that the dependence of the pion gluon parton distribution on lattice spacing and pion mass is mild. We compare our results from the lightest pion mass ensemble with the determination by JAM and xFitter global fits.
We report on recent results for the pion matrix element of the twist-2 operator corresponding to the average momentum of non-singlet quark densities. For the first time finite volume effects of this matrix element are investigated and come out to be
We present the first lattice-QCD calculation of the kaon valence-quark distribution functions using the large-momentum effective theory (LaMET) approach. The calculation is performed with multiple pion masses with the lightest one around 220 MeV, 2 l
We present a high-statistics lattice QCD determination of the valence parton distribution function (PDF) of the pion, with a mass of 300 MeV, using two very fine lattice spacings of $a=0.06$ fm and 0.04 fm. We reconstruct the $x$-dependent PDF, as we
We present lattice results for the isovector unpolarized parton distribution with nonperturbative RI/MOM-scheme renormalization on the lattice. In the framework of large-momentum effective field theory (LaMET), the full Bjorken-$x$ dependence of a mo
We present a new method, based on Gaussian process regression, for reconstructing the continuous $x$-dependence of parton distribution functions (PDFs) from quasi-PDFs computed using lattice QCD. We examine the origin of the unphysical oscillations s