ترغب بنشر مسار تعليمي؟ اضغط هنا

Parton distribution functions from lattice QCD using Bayes-Gauss-Fourier transforms

77   0   0.0 ( 0 )
 نشر من قبل Constantia Alexandrou
 تاريخ النشر 2020
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new method, based on Gaussian process regression, for reconstructing the continuous $x$-dependence of parton distribution functions (PDFs) from quasi-PDFs computed using lattice QCD. We examine the origin of the unphysical oscillations seen in current lattice calculations of quasi-PDFs and develop a nonparametric fitting approach to take the required Fourier transform. The method is tested on one ensemble of maximally twisted mass fermions with two light quarks. We find that with our approach oscillations of the quasi-PDF are drastically reduced. However, the final effect on the light-cone PDFs is small. This finding suggests that the deviation seen between current lattice QCD results and phenomenological determinations cannot be attributed solely on the Fourier transform.

قيم البحث

اقرأ أيضاً

We present the first direct calculation of the transversity parton distribution function within the nucleon from lattice QCD. The calculation is performed using simulations with the light quark mass fixed to its physical value and at one value of the lattice spacing. Novel elements of the calculations are non-perturbative renormalization and extraction of a formula for the matching to light-cone PDFs. Final results are presented in the $overline{rm MS}$ scheme at a scale of $sqrt{2}$ GeV.
The fraction of the longitudinal momentum of ${}^3text{He}$ that is carried by the isovector combination of $u$ and $d$ quarks is determined using lattice QCD for the first time. The ratio of this combination to that in the constituent nucleons is fo und to be consistent with unity at the few-percent level from calculations with quark masses corresponding to $m_pisim 800$ MeV, extrapolated to the physical quark masses. This constraint is consistent with, and significantly more precise than, determinations from global nuclear parton distribution function fits. Including the lattice QCD determination of the momentum fraction in the nNNPDF global fitting framework results in the uncertainty on the isovector momentum fraction ratio being reduced by a factor of 2.5, and thereby enables a more precise extraction of the $u$ and $d$ parton distributions in ${}^3text{He}$.
120 - Zhouyou Fan , Huey-Wen Lin 2021
We present the first determination of the $x$-dependent pion gluon distribution from lattice QCD using the pseudo-PDF approach. We use lattice ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC Collaboration, a t two lattice spacings $aapprox 0.12$ and 0.15~fm and three pion masses $M_piapprox 220$, 310 and 690 MeV. We use clover fermions for the valence action and momentum smearing to achieve pion boost momentum up to 2.29 GeV. We find that the dependence of the pion gluon parton distribution on lattice spacing and pion mass is mild. We compare our results from the lightest pion mass ensemble with the determination by JAM and xFitter global fits.
We present lattice results for the isovector unpolarized parton distribution with nonperturbative RI/MOM-scheme renormalization on the lattice. In the framework of large-momentum effective field theory (LaMET), the full Bjorken-$x$ dependence of a mo mentum-dependent quasi-distribution is calculated on the lattice and matched to the ordinary lightcone parton distribution at one-loop order, with power corrections included. The important step of RI/MOM renormalization that connects the lattice and continuum matrix elements is detailed in this paper. A few consequences of the results are also addressed here.
We present results on the quark unpolarized, helicity and transversity parton distributions functions of the nucleon. We use the quasi-parton distribution approach within the lattice QCD framework and perform the computation using an ensemble of twis ted mass fermions with the strange and charm quark masses tuned to approximately their physical values and light quark masses giving pion mass of 260 MeV. We use hierarchical probing to evaluate the disconnected quark loops. We discuss identification of ground state dominance, the Fourier transform procedure and convergence with the momentum boost. We find non-zero results for the disconnected isoscalar and strange quark distributions. The determination of the quark parton distribution and in particular the strange quark contributions that are poorly known provide valuable input to the structure of the nucleon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا