ترغب بنشر مسار تعليمي؟ اضغط هنا

Raman imaging of twist angle variations in twisted bilayer graphene at intermediate angles

93   0   0.0 ( 0 )
 نشر من قبل Bernd Beschoten
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Van der Waals layered materials with well-defined twist angles between the crystal lattices of individual layers have attracted increasing attention due to the emergence of unexpected material properties. As many properties critically depend on the exact twist angle and its spatial homogeneity, there is a need for a fast and non-invasive characterization technique of the local twist angle, to be applied preferably right after stacking. We demonstrate that confocal Raman spectroscopy can be utilized to spatially map the twist angle in stacked bilayer graphene with an angle resolution of 0.01{deg} for angles between 6.5{deg} and 8{deg} when using a green excitation laser. The twist angles can directly be extracted from the moire superlattice-activated Raman scattering process of the transverse acoustic (TA) phonon mode. Furthermore, we show that the width of the TA Raman peak contains valuable information on spatial twist-angle variations on length scales below the laser spot size of ~ 500 nm.

قيم البحث

اقرأ أيضاً

We study the zero-temperature many-body properties of twisted bilayer graphene with a twist angle equal to the so-called `first magic angle. The system low-energy single-electron spectrum consists of four (eight, if spin label is accounted) weakly-di spersing partially degenerate bands, each band accommodating one electron per Moir{{e}} cell per spin projection. This weak dispersion makes electrons particularly susceptible to the effects of interactions. Introducing several excitonic order parameters with spin-density-wave-like structure, we demonstrate that (i)~the band degeneracy is partially lifted by the interaction, and (ii)~the details of the low-energy spectrum becomes doping-dependent. For example, at or near the undoped state, interactions separate the eight bands into two quartets (one quartet is almost filled, the other is almost empty), while for two electrons per Moir{e} cell, the quartets are pulled apart, and doublets emerge. When the doping is equal to one or three electrons per cell, the doublets split into singlets. Hole doping produces similar effects. As a result, electronic properties (e.g., the density of states at the Fermi energy) demonstrate oscillating dependence on the doping concentration. This allows us to reproduce qualitatively the behavior of the conductance observed recently in experiments [Cao et al., Nature {bf 556}, 80 (2018)]. Near half-filling, the electronic spectrum loses hexagonal symmetry indicating the appearance of a many-body nematic state.
Graphene bilayers exhibit zero-energy flat bands at a discrete series of magic twist angles. In the absence of intra-sublattice inter-layer hopping, zero-energy states satisfy a Dirac equation with a non-abelian SU(2) gauge potential that cannot be d iagonalized globally. We develop a semiclassical WKB approximation scheme for this Dirac equation by introducing a dimensionless Plancks constant proportional to the twist angle, solving the linearized Dirac equation around AB and BA turning points, and connecting Airy function solutions via bulk WKB wavefunctions. We find zero energy solutions at a discrete set of values of the dimensionless Plancks constant, which we obtain analytically. Our analytic flat band twist angles correspond closely to those determined numerically in previous work.
In twisted bilayer graphene (TBG) a moire pattern forms that introduces a new length scale to the material. At the magic twist angle of 1.1{deg}, this causes a flat band to form, yielding emergent properties such as correlated insulator behavior and superconductivity [1-4]. In general, the moire structure in TBG varies spatially, influencing the local electronic properties [5-9] and hence the outcome of macroscopic charge transport experiments. In particular, to understand the wide variety observed in the phase diagrams and critical temperatures, a more detailed understanding of the local moire variation is needed [10]. Here, we study spatial and temporal variations of the moire pattern in TBG using aberration-corrected Low Energy Electron Microscopy (AC-LEEM) [11,12]. The spatial variation we find is lower than reported previously. At 500{deg}C, we observe thermal fluctuations of the moire lattice, corresponding to collective atomic displacements of less than 70pm on a time scale of seconds [13], homogenizing the sample. Despite previous concerns, no untwisting of the layers is found, even at temperatures as high as 600{deg}C [14,15]. From these observations, we conclude that thermal annealing can be used to decrease the local disorder in TBG samples. Finally, we report the existence of individual edge dislocations in the atomic and moire lattice. These topological defects break translation symmetry and are anticipated to exhibit unique local electronic properties.
Strong electron correlation and spin-orbit coupling (SOC) provide two non-trivial threads to condensed matter physics. When these two strands of physics come together, a plethora of quantum phenomena with novel topological order have been predicted t o emerge in the correlated SOC regime. In this work, we examine the combined influence of electron correlation and SOC on a 2-dimensional (2D) electronic system at the atomic interface between magic-angle twisted bilayer graphene (tBLG) and a tungsten diselenide (WSe) crystal. In such a structure, strong electron correlation within the moire flatband stabilizes correlated insulating states at both quarter and half-filling, whereas SOC transforms these Mott-like insulators into ferromagnets, evidenced by robust anomalous Hall effect with hysteretic switching behavior. The coupling between spin and valley degrees of freedom is unambiguously demonstrated as the magnetic order is shown to be tunable with an in-plane magnetic field, or a perpendicular electric field. In addition, we examine the influence of SOC on the isospin order and stability of superconductivity. Our findings establish an efficient experimental knob to engineer topological properties of moire bands in twisted bilayer graphene and related systems.
Van der Waals heterostructures obtained by artificially stacking two-dimensional crystals represent the frontier of material engineering, demonstrating properties superior to those of the starting materials. Fine control of the interlayer twist angle has opened new possibilities for tailoring the optoelectronic properties of these heterostructures. Twisted bilayer graphene with a strong interlayer coupling is a prototype of twisted heterostructure inheriting the intriguing electronic properties of graphene. Understanding the effects of the twist angle on its out-of-equilibrium optical properties is crucial for devising optoelectronic applications. With this aim, we here combine excitation-resolved hot photoluminescence with femtosecond transient absorption microscopy. The hot charge carrier distribution induced by photo-excitation results in peaked absorption bleaching and photo-induced absorption bands, both with pronounced twist angle dependence. Theoretical simulations of the electronic band structure and of the joint density of states enable to assign these bands to the blocking of interband transitions at the van Hove singularities and to photo-activated intersubband transitions. The tens of picoseconds relaxation dynamics of the observed bands is attributed to the angle-dependence of electron and phonon heat capacities of twisted bilayer graphene.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا