ﻻ يوجد ملخص باللغة العربية
Strong electron correlation and spin-orbit coupling (SOC) provide two non-trivial threads to condensed matter physics. When these two strands of physics come together, a plethora of quantum phenomena with novel topological order have been predicted to emerge in the correlated SOC regime. In this work, we examine the combined influence of electron correlation and SOC on a 2-dimensional (2D) electronic system at the atomic interface between magic-angle twisted bilayer graphene (tBLG) and a tungsten diselenide (WSe) crystal. In such a structure, strong electron correlation within the moire flatband stabilizes correlated insulating states at both quarter and half-filling, whereas SOC transforms these Mott-like insulators into ferromagnets, evidenced by robust anomalous Hall effect with hysteretic switching behavior. The coupling between spin and valley degrees of freedom is unambiguously demonstrated as the magnetic order is shown to be tunable with an in-plane magnetic field, or a perpendicular electric field. In addition, we examine the influence of SOC on the isospin order and stability of superconductivity. Our findings establish an efficient experimental knob to engineer topological properties of moire bands in twisted bilayer graphene and related systems.
Magic-angle twisted bilayer graphene (MtBLG) has proven to be an extremely promising new platform to realize and study a host of emergent quantum phases arising from the strong correlations in its narrow bandwidth flat band. In this regard, thermal t
The flat bands resulting from moire superlattices in magic-angle twisted bilayer graphene (MATBG) and ABC-trilayer graphene aligned with hexagonal boron nitride (ABC-TLG/hBN) have been shown to give rise to fascinating correlated electron phenomena s
Magic-angle twisted bilayer graphene (MATBG) is notable as a highly tunable platform for investigating strongly correlated phenomena such as high-$T_c$ superconductivity and quantum spin liquids, due to easy control of doping level through gating and
Emergent quantum phases driven by electronic interactions can manifest in materials with narrowly dispersing, i.e. flat, energy bands. Recently, flat bands have been realized in a variety of graphene-based heterostructures using the tuning parameters
A variety of correlated phases have recently emerged in select twisted van der Waals (vdW) heterostructures owing to their flat electronic dispersions. In particular, heterostructures of twisted double bilayer graphene (tDBG) manifest electric field-