ﻻ يوجد ملخص باللغة العربية
While deep learning has obtained state-of-the-art results in many applications, the adaptation of neural network architectures to incorporate new output features remains a challenge, as neural networks are commonly trained to produce a fixed output dimension. This issue is particularly severe in online learning settings, where new output features, such as items in a recommender system, are added continually with few or no associated observations. As such, methods for adapting neural networks to novel features which are both time and data-efficient are desired. To address this, we propose the Contextual HyperNetwork (CHN), an auxiliary model which generates parameters for extending the base model to a new feature, by utilizing both existing data as well as any observations and/or metadata associated with the new feature. At prediction time, the CHN requires only a single forward pass through a neural network, yielding a significant speed-up when compared to re-training and fine-tuning approaches. To assess the performance of CHNs, we use a CHN to augment a partial variational autoencoder (P-VAE), a deep generative model which can impute the values of missing features in sparsely-observed data. We show that this system obtains improved few-shot learning performance for novel features over existing imputation and meta-learning baselines across recommender systems, e-learning, and healthcare tasks.
{em Hypernetworks} are architectures that produce the weights of a task-specific {em primary network}. A notable application of hypernetworks in the recent literature involves learning to output functional representations. In these scenarios, the hyp
Statistical language models (LM) play a key role in Automatic Speech Recognition (ASR) systems used by conversational agents. These ASR systems should provide a high accuracy under a variety of speaking styles, domains, vocabulary and argots. In this
In the context of learning to map an input $I$ to a function $h_I:mathcal{X}to mathbb{R}$, two alternative methods are compared: (i) an embedding-based method, which learns a fixed function in which $I$ is encoded as a conditioning signal $e(I)$ and
Recently, considerable effort has been devoted to deep domain adaptation in computer vision and machine learning communities. However, most of existing work only concentrates on learning shared feature representation by minimizing the distribution di
In this paper, we propose a novel weighted combination feature selection method using bootstrap and fuzzy sets. The proposed method mainly consists of three processes, including fuzzy sets generation using bootstrap, weighted combination of fuzzy set