ترغب بنشر مسار تعليمي؟ اضغط هنا

Multigraded algebras and multigraded linear series

88   0   0.0 ( 0 )
 نشر من قبل Yairon Cid Ruiz
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper is devoted to the study of multigraded algebras and multigraded linear series. For an $mathbb{N}^s$-graded algebra $A$, we define and study its volume function $F_A:mathbb{N}_+^sto mathbb{R}$, which computes the asymptotics of the Hilbert function of $A$. We relate the volume function $F_A$ to the volume of the fibers of the global Newton-Okounkov body $Delta(A)$ of $A$. Unlike the classical case of standard multigraded algebras, the volume function $F_A$ is not a polynomial in general. However, in the case when the algebra $A$ has a decomposable grading, we show that the volume function $F_A$ is a polynomial with non-negative coefficients. We then define mixed multiplicities in this case and provide a full characterization for their positivity. Furthermore, we apply our results on multigraded algebras to multigraded linear series. Our work recovers and unifies recent developments on mixed multiplicities. In particular, we recover results on the existence of mixed multiplicities for (not necessarily Noetherian) graded families of ideals and on the positivity of the multidegrees of multiprojective varieties.



قيم البحث

اقرأ أيضاً

190 - Marc Chardin , Navid Nemati 2020
$V$ is a complete intersection scheme in a multiprojective space if it can be defined by an ideal $I$ with as many generators as $textrm{codim}(V)$. We investigate the multigraded regularity of complete intersections scheme in $mathbb{P}^ntimes mathb b{P}^m$. We explicitly compute many values of the Hilbert functions of $0$-dimensional complete intersections. We show that these values only depend upon $n,m$, and the bidegrees of the generators of $I$. As a result, we provide a sharp upper bound for the multigraded regularity of $0$-dimensional complete intersections.
Let $A$ be a semigroup whose only invertible element is 0. For an $A$-homogeneous ideal we discuss the notions of simple $i$-syzygies and simple minimal free resolutions of $R/I$. When $I$ is a lattice ideal, the simple 0-syzygies of $R/I$ are the bi nomials in $I$. We show that for an appropriate choice of bases every $A$-homogeneous minimal free resolution of $R/I$ is simple. We introduce the gcd-complex $D_{gcd}(bf b)$ for a degree $mathbf{b}in A$. We show that the homology of $D_{gcd}(bf b)$ determines the $i$-Betti numbers of degree $bf b$. We discuss the notion of an indispensable complex of $R/I$. We show that the Koszul complex of a complete intersection lattice ideal $I$ is the indispensable resolution of $R/I$ when the $A$-degrees of the elements of the generating $R$-sequence are incomparable.
387 - Dipankar Ghosh 2014
Let $A$ be a Noetherian standard $mathbb{N}$-graded algebra over an Artinian local ring $A_0$. Let $I_1,ldots,I_t$ be homogeneous ideals of $A$ and $M$ a finitely generated $mathbb{N}$-graded $A$-module. We prove that there exist two integers $k$ and $k$ such that [ mathrm{reg}(I_1^{n_1} cdots I_t^{n_t} M) leq (n_1 + cdots + n_t) k + k quadmbox{for all }~n_1,ldots,n_t in mathbb{N}. ]
In this paper we study the equations of the elimination ideal associated with $n+1$ generic multihomogeneous polynomials defined over a product of projective spaces of dimension $n$. We first prove a duality property and then make this duality explic it by introducing multigraded Sylvester forms. These results provide a partial generalization of similar properties that are known in the setting of homogeneous polynomial systems defined over a single projective space. As an important consequence, we derive a new family of elimination matrices that can be used for solving zero-dimensional multiprojective polynomial systems by means of linear algebra methods.
120 - Hara Charalambous 2010
Let $R=Bbbk[x_1,..., x_n]$ and $M=R^s/I$ a multigraded squarefree module. We discuss the construction of cochain complexes associated to $M$ and we show how to interpret homological invariants of $M$ in terms of topological computations. This is a ge neralization of the well studied case of squarefree monomial ideals.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا