ترغب بنشر مسار تعليمي؟ اضغط هنا

Dual Discriminator Adversarial Distillation for Data-free Model Compression

213   0   0.0 ( 0 )
 نشر من قبل Haoran Zhao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Knowledge distillation has been widely used to produce portable and efficient neural networks which can be well applied on edge devices for computer vision tasks. However, almost all top-performing knowledge distillation methods need to access the original training data, which usually has a huge size and is often unavailable. To tackle this problem, we propose a novel data-free approach in this paper, named Dual Discriminator Adversarial Distillation (DDAD) to distill a neural network without any training data or meta-data. To be specific, we use a generator to create samples through dual discriminator adversarial distillation, which mimics the original training data. The generator not only uses the pre-trained teachers intrinsic statistics in existing batch normalization layers but also obtains the maximum discrepancy from the student model. Then the generated samples are used to train the compact student network under the supervision of the teacher. The proposed method obtains an efficient student network which closely approximates its teacher network, despite using no original training data. Extensive experiments are conducted to to demonstrate the effectiveness of the proposed approach on CIFAR-10, CIFAR-100 and Caltech101 datasets for classification tasks. Moreover, we extend our method to semantic segmentation tasks on several public datasets such as CamVid and NYUv2. All experiments show that our method outperforms all baselines for data-free knowledge distillation.

قيم البحث

اقرأ أيضاً

105 - Shaohao Lu , Yuqiao Xian , Ke Yan 2021
The Deep Neural Networks are vulnerable toadversarial exam-ples(Figure 1), making the DNNs-based systems collapsed byadding the inconspicuous perturbations to the images. Most of the existing works for adversarial attack are gradient-based and suf-fe r from the latency efficiencies and the load on GPU memory. Thegenerative-based adversarial attacks can get rid of this limitation,and some relative works propose the approaches based on GAN.However, suffering from the difficulty of the convergence of train-ing a GAN, the adversarial examples have either bad attack abilityor bad visual quality. In this work, we find that the discriminatorcould be not necessary for generative-based adversarial attack, andpropose theSymmetric Saliency-based Auto-Encoder (SSAE)to generate the perturbations, which is composed of the saliencymap module and the angle-norm disentanglement of the featuresmodule. The advantage of our proposed method lies in that it is notdepending on discriminator, and uses the generative saliency map to pay more attention to label-relevant regions. The extensive exper-iments among the various tasks, datasets, and models demonstratethat the adversarial examples generated by SSAE not only make thewidely-used models collapse, but also achieves good visual quality.The code is available at https://github.com/BravoLu/SSAE.
Knowledge Distillation (KD) has made remarkable progress in the last few years and become a popular paradigm for model compression and knowledge transfer. However, almost all existing KD algorithms are data-driven, i.e., relying on a large amount of original training data or alternative data, which is usually unavailable in real-world scenarios. In this paper, we devote ourselves to this challenging problem and propose a novel adversarial distillation mechanism to craft a compact student model without any real-world data. We introduce a model discrepancy to quantificationally measure the difference between student and teacher models and construct an optimizable upper bound. In our work, the student and the teacher jointly act the role of the discriminator to reduce this discrepancy, when a generator adversarially produces some hard samples to enlarge it. Extensive experiments demonstrate that the proposed data-free method yields comparable performance to existing data-driven methods. More strikingly, our approach can be directly extended to semantic segmentation, which is more complicated than classification, and our approach achieves state-of-the-art results. Code and pretrained models are available at https://github.com/VainF/Data-Free-Adversarial-Distillation.
Detecting abnormal activities in real-world surveillance videos is an important yet challenging task as the prior knowledge about video anomalies is usually limited or unavailable. Despite that many approaches have been developed to resolve this prob lem, few of them can capture the normal spatio-temporal patterns effectively and efficiently. Moreover, existing works seldom explicitly consider the local consistency at frame level and global coherence of temporal dynamics in video sequences. To this end, we propose Convolutional Transformer based Dual Discriminator Generative Adversarial Networks (CT-D2GAN) to perform unsupervised video anomaly detection. Specifically, we first present a convolutional transformer to perform future frame prediction. It contains three key components, i.e., a convolutional encoder to capture the spatial information of the input video clips, a temporal self-attention module to encode the temporal dynamics, and a convolutional decoder to integrate spatio-temporal features and predict the future frame. Next, a dual discriminator based adversarial training procedure, which jointly considers an image discriminator that can maintain the local consistency at frame-level and a video discriminator that can enforce the global coherence of temporal dynamics, is employed to enhance the future frame prediction. Finally, the prediction error is used to identify abnormal video frames. Thoroughly empirical studies on three public video anomaly detection datasets, i.e., UCSD Ped2, CUHK Avenue, and Shanghai Tech Campus, demonstrate the effectiveness of the proposed adversarial spatio-temporal modeling framework.
Conditional Generative Adversarial Networks (cGANs) have been used in many image processing tasks. However, they still have serious problems maintaining the balance between conditioning the output on the input and creating the output with the desired distribution based on the corresponding ground truth. The traditional cGANs, similar to most conventional GANs, suffer from vanishing gradients, which backpropagate from the discriminator to the generator. Moreover, the traditional cGANs are sensitive to architectural changes due to previously mentioned gradient problems. Therefore, balancing the architecture of the cGANs is almost impossible. Recently MSG-GAN has been proposed to stabilize the performance of the GANs by applying multiple connections between the generator and discriminator. In this work, we propose a method called MSGDD-cGAN, which first stabilizes the performance of the cGANs using multi-connections gradients flow. Secondly, the proposed network architecture balances the correlation of the output to input and the fitness of the output on the target distribution. This balance is generated by using the proposed dual discrimination procedure. We tested our model by segmentation of fetal ultrasound images. Our model shows a 3.18% increase in the F1 score comparing to the pix2pix version of cGANs.
Large pre-trained transformer-based language models have achieved impressive results on a wide range of NLP tasks. In the past few years, Knowledge Distillation(KD) has become a popular paradigm to compress a computationally expensive model to a reso urce-efficient lightweight model. However, most KD algorithms, especially in NLP, rely on the accessibility of the original training dataset, which may be unavailable due to privacy issues. To tackle this problem, we propose a novel two-stage data-free distillation method, named Adversarial self-Supervised Data-Free Distillation (AS-DFD), which is designed for compressing large-scale transformer-based models (e.g., BERT). To avoid text generation in discrete space, we introduce a Plug & Play Embedding Guessing method to craft pseudo embeddings from the teachers hidden knowledge. Meanwhile, with a self-supervised module to quantify the students ability, we adapt the difficulty of pseudo embeddings in an adversarial training manner. To the best of our knowledge, our framework is the first data-free distillation framework designed for NLP tasks. We verify the effectiveness of our method on several text classification datasets.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا