ترغب بنشر مسار تعليمي؟ اضغط هنا

Adversarial Self-Supervised Data-Free Distillation for Text Classification

132   0   0.0 ( 0 )
 نشر من قبل Xinyin Ma
 تاريخ النشر 2020
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Large pre-trained transformer-based language models have achieved impressive results on a wide range of NLP tasks. In the past few years, Knowledge Distillation(KD) has become a popular paradigm to compress a computationally expensive model to a resource-efficient lightweight model. However, most KD algorithms, especially in NLP, rely on the accessibility of the original training dataset, which may be unavailable due to privacy issues. To tackle this problem, we propose a novel two-stage data-free distillation method, named Adversarial self-Supervised Data-Free Distillation (AS-DFD), which is designed for compressing large-scale transformer-based models (e.g., BERT). To avoid text generation in discrete space, we introduce a Plug & Play Embedding Guessing method to craft pseudo embeddings from the teachers hidden knowledge. Meanwhile, with a self-supervised module to quantify the students ability, we adapt the difficulty of pseudo embeddings in an adversarial training manner. To the best of our knowledge, our framework is the first data-free distillation framework designed for NLP tasks. We verify the effectiveness of our method on several text classification datasets.



قيم البحث

اقرأ أيضاً

Knowledge Distillation (KD) has made remarkable progress in the last few years and become a popular paradigm for model compression and knowledge transfer. However, almost all existing KD algorithms are data-driven, i.e., relying on a large amount of original training data or alternative data, which is usually unavailable in real-world scenarios. In this paper, we devote ourselves to this challenging problem and propose a novel adversarial distillation mechanism to craft a compact student model without any real-world data. We introduce a model discrepancy to quantificationally measure the difference between student and teacher models and construct an optimizable upper bound. In our work, the student and the teacher jointly act the role of the discriminator to reduce this discrepancy, when a generator adversarially produces some hard samples to enlarge it. Extensive experiments demonstrate that the proposed data-free method yields comparable performance to existing data-driven methods. More strikingly, our approach can be directly extended to semantic segmentation, which is more complicated than classification, and our approach achieves state-of-the-art results. Code and pretrained models are available at https://github.com/VainF/Data-Free-Adversarial-Distillation.
In cross-lingual text classification, one seeks to exploit labeled data from one language to train a text classification model that can then be applied to a completely different language. Recent multilingual representation models have made it much ea sier to achieve this. Still, there may still be subtle differences between languages that are neglected when doing so. To address this, we present a semi-supervised adversarial training process that minimizes the maximal loss for label-preserving input perturbations. The resulting model then serves as a teacher to induce labels for unlabeled target language samples that can be used during further adversarial training, allowing us to gradually adapt our model to the target language. Compared with a number of strong baselines, we observe significant gains in effectiveness on document and intent classification for a diverse set of languages.
Inspired by the success of self attention mechanism and Transformer architecture in sequence transduction and image generation applications, we propose novel self attention-based architectures to improve the performance of adversarial latent code- ba sed schemes in text generation. Adversarial latent code-based text generation has recently gained a lot of attention due to their promising results. In this paper, we take a step to fortify the architectures used in these setups, specifically AAE and ARAE. We benchmark two latent code-based methods (AAE and ARAE) designed based on adversarial setups. In our experiments, the Google sentence compression dataset is utilized to compare our method with these methods using various objective and subjective measures. The experiments demonstrate the proposed (self) attention-based models outperform the state-of-the-art in adversarial code-based text generation.
Meta-learning has emerged as a trending technique to tackle few-shot text classification and achieved state-of-the-art performance. However, existing solutions heavily rely on the exploitation of lexical features and their distributional signatures o n training data, while neglecting to strengthen the models ability to adapt to new tasks. In this paper, we propose a novel meta-learning framework integrated with an adversarial domain adaptation network, aiming to improve the adaptive ability of the model and generate high-quality text embedding for new classes. Extensive experiments are conducted on four benchmark datasets and our method demonstrates clear superiority over the state-of-the-art models in all the datasets. In particular, the accuracy of 1-shot and 5-shot classification on the dataset of 20 Newsgroups is boosted from 52.1% to 59.6%, and from 68.3% to 77.8%, respectively.
This paper is concerned with self-supervised learning for small models. The problem is motivated by our empirical studies that while the widely used contrastive self-supervised learning method has shown great progress on large model training, it does not work well for small models. To address this problem, we propose a new learning paradigm, named SElf-SupErvised Distillation (SEED), where we leverage a larger network (as Teacher) to transfer its representational knowledge into a smaller architecture (as Student) in a self-supervised fashion. Instead of directly learning from unlabeled data, we train a student encoder to mimic the similarity score distribution inferred by a teacher over a set of instances. We show that SEED dramatically boosts the performance of small networks on downstream tasks. Compared with self-supervised baselines, SEED improves the top-1 accuracy from 42.2% to 67.6% on EfficientNet-B0 and from 36.3% to 68.2% on MobileNet-v3-Large on the ImageNet-1k dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا