ترغب بنشر مسار تعليمي؟ اضغط هنا

Separation of singularities for the Bergman space and application to control theory

70   0   0.0 ( 0 )
 نشر من قبل Andreas Hartmann
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English
 تأليف Andreas Hartmann




اسأل ChatGPT حول البحث

In this paper, we solve a separation of singularities problem in the Bergman space. More precisely, we show that if $Psubset mathbb{C}$ is a convex polygon which is the intersection of $n$ half planes, then the Bergman space on $P$ decomposes into the sum of the Bergman spaces on these half planes. The result applies to the characterization of the reachable space of the one-dimensional heat equation on a finite interval with boundary controls. We prove that this space is a Bergman space of the square which has the given interval as a diagonal. This gives an affirmative answer to a conjecture raised in [HKT20].



قيم البحث

اقرأ أيضاً

We analyze Bergman spaces A p f (D) of generalized analytic functions of solutions to the Vekua equation $partial$w = ($partial$f /f)w in the unit disc of the complex plane, for Lipschitz-smooth non-vanishing real valued functions f and 1 < p < $inft y$. We consider a family of bounded extremal problems (best constrained approximation) in the Bergman space A p (D) and in its generalized version A p f (D), that consists in approximating a function in subsets of D by the restriction of a function belonging to A p (D) or A p f (D) subject to a norm constraint. Preliminary constructive results are provided for p = 2.
130 - Andreas Hartmann 2021
We discuss reachable states for the Hermite heat equation on a segment with boundary $L^2$-controls. The Hermite heat equation corresponds to the heat equation to which a quadratic potential is added. We will discuss two situations: when one endpoint of the segment is the origin and when the segment is symmetric with respect to the origin. One of the main results is that reachable states extend to functions in a Bergman space on a square one diagonal of which is the segment under consideration, and that functions holomorphic in a neighborhood of this square are reachable.
The objective of this paper is twofold. First we provide the -- to the best knowledge of the authors -- first result on the behavior of the regular part of the free boundary of the obstacle problem close to singularities. We do this using our second result which is the partial answer to a long standing conjecture and the first partial classification of global solutions of the obstacle problem with unbounded coincidence sets.
If $U:[0,+infty[times M$ is a uniformly continuous viscosity solution of the evolution Hamilton-Jacobi equation $$partial_tU+ H(x,partial_xU)=0,$$ where $M$ is a not necessarily compact manifold, and $H$ is a Tonelli Hamiltonian, we prove the set $Si gma(U)$, of points where $U$ is not differentiable, is locally contractible. Moreover, we study the homotopy type of $Sigma(U)$. We also give an application to the singularities of a distance function to a closed subset of a complete Riemannian manifold.
Following upon results of Putinar, Sun, Wang, Zheng and the first author, we provide models for the restrictions of the multiplication by a finite Balschke product on the Bergman space in the unit disc to its reducing subspaces. The models involve a generalization of the notion of bundle shift on the Hardy space introduced by Abrahamse and the first author to the Bergman space. We develop generalized bundle shifts on more general domains. While the characterization of the bundle shift is rather explicit, we have not been able to obtain all the earlier results appeared, in particular, the facts that the number of the minimal reducing subspaces equals the number of connected components of the Riemann surface $B(z)=B(w)$ and the algebra of commutant of $T_{B}$ is commutative, are not proved. Moreover, the role of the Riemann surface is not made clear also.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا