ترغب بنشر مسار تعليمي؟ اضغط هنا

Inference from Non-Random Samples Using Bayesian Machine Learning

191   0   0.0 ( 0 )
 نشر من قبل Yutao Liu
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider inference from non-random samples in data-rich settings where high-dimensional auxiliary information is available both in the sample and the target population, with survey inference being a special case. We propose a regularized prediction approach that predicts the outcomes in the population using a large number of auxiliary variables such that the ignorability assumption is reasonable while the Bayesian framework is straightforward for quantification of uncertainty. Besides the auxiliary variables, inspired by Little & An (2004), we also extend the approach by estimating the propensity score for a unit to be included in the sample and also including it as a predictor in the machine learning models. We show through simulation studies that the regularized predictions using soft Bayesian additive regression trees yield valid inference for the population means and coverage rates close to the nominal levels. We demonstrate the application of the proposed methods using two different real data applications, one in a survey and one in an epidemiology study.



قيم البحث

اقرأ أيضاً

We propose a framework for Bayesian non-parametric estimation of the rate at which new infections occur assuming that the epidemic is partially observed. The developed methodology relies on modelling the rate at which new infections occur as a functi on which only depends on time. Two different types of prior distributions are proposed namely using step-functions and B-splines. The methodology is illustrated using both simulated and real datasets and we show that certain aspects of the epidemic such as seasonality and super-spreading events are picked up without having to explicitly incorporate them into a parametric model.
209 - Umberto Picchini 2012
Models defined by stochastic differential equations (SDEs) allow for the representation of random variability in dynamical systems. The relevance of this class of models is growing in many applied research areas and is already a standard tool to mode l e.g. financial, neuronal and population growth dynamics. However inference for multidimensional SDE models is still very challenging, both computationally and theoretically. Approximate Bayesian computation (ABC) allow to perform Bayesian inference for models which are sufficiently complex that the likelihood function is either analytically unavailable or computationally prohibitive to evaluate. A computationally efficient ABC-MCMC algorithm is proposed, halving the running time in our simulations. Focus is on the case where the SDE describes latent dynamics in state-space models; however the methodology is not limited to the state-space framework. Simulation studies for a pharmacokinetics/pharmacodynamics model and for stochastic chemical reactions are considered and a MATLAB package implementing our ABC-MCMC algorithm is provided.
This preprint has been reviewed and recommended by Peer Community In Evolutionary Biology (http://dx.doi.org/10.24072/pci.evolbiol.100036). Approximate Bayesian computation (ABC) has grown into a standard methodology that manages Bayesian inference f or models associated with intractable likelihood functions. Most ABC implementations require the preliminary selection of a vector of informative statistics summarizing raw data. Furthermore, in almost all existing implementations, the tolerance level that separates acceptance from rejection of simulated parameter values needs to be calibrated. We propose to conduct likelihood-free Bayesian inferences about parameters with no prior selection of the relevant components of the summary statistics and bypassing the derivation of the associated tolerance level. The approach relies on the random forest methodology of Breiman (2001) applied in a (non parametric) regression setting. We advocate the derivation of a new random forest for each component of the parameter vector of interest. When compared with earlier ABC solutions, this method offers significant gains in terms of robustness to the choice of the summary statistics, does not depend on any type of tolerance level, and is a good trade-off in term of quality of point estimator precision and credible interval estimations for a given computing time. We illustrate the performance of our methodological proposal and compare it with earlier ABC methods on a Normal toy example and a population genetics example dealing with human population evolution. All methods designed here have been incorporated in the R package abcrf (version 1.7) available on CRAN.
Many panel studies collect refreshment samples---new, randomly sampled respondents who complete the questionnaire at the same time as a subsequent wave of the panel. With appropriate modeling, these samples can be leveraged to correct inferences for biases caused by non-ignorable attrition. We present such a model when the panel includes many categorical survey variables. The model relies on a Bayesian latent pattern mixture model, in which an indicator for attrition and the survey variables are modeled jointly via a latent class model. We allow the multinomial probabilities within classes to depend on the attrition indicator, which offers additional flexibility over standard applications of latent class models. We present results of simulation studies that illustrate the benefits of this flexibility. We apply the model to correct attrition bias in an analysis of data from the 2007-2008 Associated Press/Yahoo News election panel study.
We describe a new and computationally efficient Bayesian methodology for inferring species trees and demographics from unlinked binary markers. Likelihood calculations are carried out using diffusion models of allele frequency dynamics combined with a new algorithm for numerically computing likelihoods of quantitative traits. The diffusion approach allows for analysis of datasets containing hundreds or thousands of individuals. The method, which we call snapper, has been implemented as part of the Beast2 package. We introduce the models, the efficient algorithms, and report performance of snapper on simulated data sets and on SNP data from rattlesnakes and freshwater turtles.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا