ترغب بنشر مسار تعليمي؟ اضغط هنا

Estimation of Summary-to-Text Inconsistency by Mismatched Embeddings

69   0   0.0 ( 0 )
 نشر من قبل Oleg Vasilyev
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose a new reference-free summary quality evaluation measure, with emphasis on the faithfulness. The measure is designed to find and count all possible minute inconsistencies of the summary with respect to the source document. The proposed ESTIME, Estimator of Summary-to-Text Inconsistency by Mismatched Embeddings, correlates with expert scores in summary-level SummEval dataset stronger than other common evaluation measures not only in Consistency but also in Fluency. We also introduce a method of generating subtle factual errors in human summaries. We show that ESTIME is more sensitive to subtle errors than other common evaluation measures.

قيم البحث

اقرأ أيضاً

Recently, various neural encoder-decoder models pioneered by Seq2Seq framework have been proposed to achieve the goal of generating more abstractive summaries by learning to map input text to output text. At a high level, such neural models can freel y generate summaries without any constraint on the words or phrases used. Moreover, their format is closer to human-edited summaries and output is more readable and fluent. However, the neural models abstraction ability is a double-edged sword. A commonly observed problem with the generated summaries is the distortion or fabrication of factual information in the article. This inconsistency between the original text and the summary has caused various concerns over its applicability, and the previous evaluation methods of text summarization are not suitable for this issue. In response to the above problems, the current research direction is predominantly divided into two categories, one is to design fact-aware evaluation metrics to select outputs without factual inconsistency errors, and the other is to develop new summarization systems towards factual consistency. In this survey, we focus on presenting a comprehensive review of these fact-specific evaluation methods and text summarization models.
78 - Xiao Zhang , Dejing Dou , Ji Wu 2019
External knowledge is often useful for natural language understanding tasks. We introduce a contextual text representation model called Conceptual-Contextual (CC) embeddings, which incorporates structured knowledge into text representations. Unlike e ntity embedding methods, our approach encodes a knowledge graph into a context model. CC embeddings can be easily reused for a wide range of tasks just like pre-trained language models. Our model effectively encodes the huge UMLS database by leveraging semantic generalizability. Experiments on electronic health records (EHRs) and medical text processing benchmarks showed our model gives a major boost to the performance of supervised medical NLP tasks.
There has been significant interest recently in learning multilingual word embeddings -- in which semantically similar words across languages have similar embeddings. State-of-the-art approaches have relied on expensive labeled data, which is unavail able for low-resource languages, or have involved post-hoc unification of monolingual embeddings. In the present paper, we investigate the efficacy of multilingual embeddings learned from weakly-supervised image-text data. In particular, we propose methods for learning multilingual embeddings using image-text data, by enforcing similarity between the representations of the image and that of the text. Our experiments reveal that even without using any expensive labeled data, a bag-of-words-based embedding model trained on image-text data achieves performance comparable to the state-of-the-art on crosslingual semantic similarity tasks.
This paper introduces a sentence to vector encoding framework suitable for advanced natural language processing. Our latent representation is shown to encode sentences with common semantic information with similar vector representations. The vector r epresentation is extracted from an encoder-decoder model which is trained on sentence paraphrase pairs. We demonstrate the application of the sentence representations for two different tasks -- sentence paraphrasing and paragraph summarization, making it attractive for commonly used recurrent frameworks that process text. Experimental results help gain insight how vector representations are suitable for advanced language embedding.
Knowledge graphs suffer from sparsity which degrades the quality of representations generated by various methods. While there is an abundance of textual information throughout the web and many existing knowledge bases, aligning information across the se diverse data sources remains a challenge in the literature. Previous work has partially addressed this issue by enriching knowledge graph entities based on hard co-occurrence of words present in the entities of the knowledge graphs and external text, while we achieve soft augmentation by proposing a knowledge graph enrichment and embedding framework named Edge. Given an original knowledge graph, we first generate a rich but noisy augmented graph using external texts in semantic and structural level. To distill the relevant knowledge and suppress the introduced noise, we design a graph alignment term in a shared embedding space between the original graph and augmented graph. To enhance the embedding learning on the augmented graph, we further regularize the locality relationship of target entity based on negative sampling. Experimental results on four benchmark datasets demonstrate the robustness and effectiveness of Edge in link prediction and node classification.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا