ترغب بنشر مسار تعليمي؟ اضغط هنا

Use of Metamorphic Relations as Knowledge Carriers to Train Deep Neural Networks

79   0   0.0 ( 0 )
 نشر من قبل Pak Lok Poon
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Training multiple-layered deep neural networks (DNNs) is difficult. The standard practice of using a large number of samples for training often does not improve the performance of a DNN to a satisfactory level. Thus, a systematic training approach is needed. To address this need, we introduce an innovative approach of using metamorphic relations (MRs) as knowledge carriers to train DNNs. Based on the concept of metamorphic testing and MRs (which play the role of a test oracle in software testing), we make use of the notion of metamorphic group of inputs as concrete instances of MRs (which are abstractions of knowledge) to train a DNN in a systematic and effective manner. To verify the viability of our training approach, we have conducted a preliminary experiment to compare the performance of two DNNs: one trained with MRs and the other trained without MRs. We found that the DNN trained with MRs has delivered a better performance, thereby confirming that our approach of using MRs as knowledge carriers to train DNNs is promising. More work and studies, however, are needed to solidify and leverage this approach to generate widespread impact on effective DNN training.



قيم البحث

اقرأ أيضاً

Deep learning models are widely used for image analysis. While they offer high performance in terms of accuracy, people are concerned about if these models inappropriately make inferences using irrelevant features that are not encoded from the target object in a given image. To address the concern, we propose a metamorphic testing approach that assesses if a given inference is made based on irrelevant features. Specifically, we propose two novel metamorphic relations to detect such inappropriate inferences. We applied our approach to 10 image classification models and 10 object detection models, with three large datasets, i.e., ImageNet, COCO, and Pascal VOC. Over 5.3% of the top-5 correct predictions made by the image classification models are subject to inappropriate inferences using irrelevant features. The corresponding rate for the object detection models is over 8.5%. Based on the findings, we further designed a new image generation strategy that can effectively attack existing models. Comparing with a baseline approach, our strategy can double the success rate of attacks.
We draw a formal connection between using synthetic training data to optimize neural network parameters and approximate, Bayesian, model-based reasoning. In particular, training a neural network using synthetic data can be viewed as learning a propos al distribution generator for approximate inference in the synthetic-data generative model. We demonstrate this connection in a recognition task where we develop a novel Captcha-breaking architecture and train it using synthetic data, demonstrating both state-of-the-art performance and a way of computing task-specific posterior uncertainty. Using a neural network trained this way, we also demonstrate successful breaking of real-world Captchas currently used by Facebook and Wikipedia. Reasoning from these empirical results and drawing connections with Bayesian modeling, we discuss the robustness of synthetic data results and suggest important considerations for ensuring good neural network generalization when training with synthetic data.
When a camera is pointed at a strong light source, the resulting photograph may contain lens flare artifacts. Flares appear in a wide variety of patterns (halos, streaks, color bleeding, haze, etc.) and this diversity in appearance makes flare remova l challenging. Existing analytical solutions make strong assumptions about the artifacts geometry or brightness, and therefore only work well on a small subset of flares. Machine learning techniques have shown success in removing other types of artifacts, like reflections, but have not been widely applied to flare removal due to the lack of training data. To solve this problem, we explicitly model the optical causes of flare either empirically or using wave optics, and generate semi-synthetic pairs of flare-corrupted and clean images. This enables us to train neural networks to remove lens flare for the first time. Experiments show our data synthesis approach is critical for accurate flare removal, and that models trained with our technique generalize well to real lens flares across different scenes, lighting conditions, and cameras.
The latest Deep Learning (DL) models for detection and classification have achieved an unprecedented performance over classical machine learning algorithms. However, DL models are black-box methods hard to debug, interpret, and certify. DL alone cann ot provide explanations that can be validated by a non technical audience. In contrast, symbolic AI systems that convert concepts into rules or symbols -- such as knowledge graphs -- are easier to explain. However, they present lower generalisation and scaling capabilities. A very important challenge is to fuse DL representations with expert knowledge. One way to address this challenge, as well as the performance-explainability trade-off is by leveraging the best of both streams without obviating domain expert knowledge. We tackle such problem by considering the symbolic knowledge is expressed in form of a domain expert knowledge graph. We present the eXplainable Neural-symbolic learning (X-NeSyL) methodology, designed to learn both symbolic and deep representations, together with an explainability metric to assess the level of alignment of machine and human expert explanations. The ultimate objective is to fuse DL representations with expert domain knowledge during the learning process to serve as a sound basis for explainability. X-NeSyL methodology involves the concrete use of two notions of explanation at inference and training time respectively: 1) EXPLANet: Expert-aligned eXplainable Part-based cLAssifier NETwork Architecture, a compositional CNN that makes use of symbolic representations, and 2) SHAP-Backprop, an explainable AI-informed training procedure that guides the DL process to align with such symbolic representations in form of knowledge graphs. We showcase X-NeSyL methodology using MonuMAI dataset for monument facade image classification, and demonstrate that our approach improves explainability and performance.
75 - Jeff Heaton 2020
Deep learning is a group of exciting new technologies for neural networks. Through a combination of advanced training techniques and neural network architectural components, it is now possible to create neural networks that can handle tabular data, i mages, text, and audio as both input and output. Deep learning allows a neural network to learn hierarchies of information in a way that is like the function of the human brain. This course will introduce the student to classic neural network structures, Convolution Neural Networks (CNN), Long Short-Term Memory (LSTM), Gated Recurrent Neural Networks (GRU), General Adversarial Networks (GAN), and reinforcement learning. Application of these architectures to computer vision, time series, security, natural language processing (NLP), and data generation will be covered. High-Performance Computing (HPC) aspects will demonstrate how deep learning can be leveraged both on graphical processing units (GPUs), as well as grids. Focus is primarily upon the application of deep learning to problems, with some introduction to mathematical foundations. Readers will use the Python programming language to implement deep learning using Google TensorFlow and Keras. It is not necessary to know Python prior to this book; however, familiarity with at least one programming language is assumed.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا