ﻻ يوجد ملخص باللغة العربية
Stochastically perturbed Korteweg-de Vries (KdV) equations are widely used to describe the effect of random perturbations on coherent solitary waves. We present a collective coordinate approach to describe the effect on coherent solitary waves in stochastically perturbed KdV equations. The collective coordinate approach allows one to reduce the infinite-dimensional stochastic partial differential equation (SPDE) to a finite-dimensional stochastic differential equation for the amplitude, width and location of the solitary wave. The reduction provides a remarkably good quantitative description of the shape of the solitary waves and its location. Moreover, the collective coordinate framework can be used to estimate the time-scale of validity of stochastically perturbed KdV equations for which they can be used to describe coherent solitary waves. We describe loss of coherence by blow-up as well as by radiation into linear waves. We corroborate our analytical results with numerical simulations of the full SPDE.
Original Whithams method of derivation of modulation equations is applied to systems whose dynamics is described by a perturbed Korteweg-de Vries equation. Two situations are distinguished: (i) the perturbation leads to appearance of right-hand sides
Periodic waves are investigated in a system composed of a Kuramoto-Sivashinsky - Korteweg-de Vries (KS-KdV) equation, which is linearly coupled to an extra linear dissipative equation. The model describes, e.g., a two-layer liquid film flowing down a
We study the dynamics of dark solitons in an incoherently pumped exciton-polariton condensate by means of a system composed by a generalized open-dissipative Gross-Pitaevskii equation for the polaritons wavefunction and a rate equation for the excito
We discuss the problem of breaking of a nonlinear wave in the process of its propagation into a medium at rest. It is supposed that the profile of the wave is described at the breaking moment by the function $(-x)^{1/n}$ ($x<0$, positive pulse) or $-
By using the multiple scale method with the simultaneous introduction of multiple times, we study the propagation of long surface-waves in a shallow inviscid fluid. As a consequence of the requirements of scale invariance and absence of secular terms