ﻻ يوجد ملخص باللغة العربية
We study the dynamics of dark solitons in an incoherently pumped exciton-polariton condensate by means of a system composed by a generalized open-dissipative Gross-Pitaevskii equation for the polaritons wavefunction and a rate equation for the exciton reservoir density. Considering a perturbative regime of sufficiently small reservoir excitations, we use the reductive perturbation method, to reduce the system to a Korteweg-de Vries (KdV) equation with linear loss. This model is used to describe the analytical form and the dynamics of dark solitons. We show that the polariton field supports decaying dark soliton solutions with a decay rate determined analytically in the weak pumping regime. We also find that the dark soliton evolution is accompanied by a shelf, whose dynamics follows qualitatively the effective KdV picture.
Original Whithams method of derivation of modulation equations is applied to systems whose dynamics is described by a perturbed Korteweg-de Vries equation. Two situations are distinguished: (i) the perturbation leads to appearance of right-hand sides
We discuss the problem of breaking of a nonlinear wave in the process of its propagation into a medium at rest. It is supposed that the profile of the wave is described at the breaking moment by the function $(-x)^{1/n}$ ($x<0$, positive pulse) or $-
We consider the long-time evolution of pulses in the Korteweg-de Vries equation theory for initial distributions which produce no soliton, but instead lead to the formation of a dispersive shock wave and of a rarefaction wave. An approach based on Wh
Periodic waves are investigated in a system composed of a Kuramoto-Sivashinsky - Korteweg-de Vries (KS-KdV) equation, which is linearly coupled to an extra linear dissipative equation. The model describes, e.g., a two-layer liquid film flowing down a
Stochastically perturbed Korteweg-de Vries (KdV) equations are widely used to describe the effect of random perturbations on coherent solitary waves. We present a collective coordinate approach to describe the effect on coherent solitary waves in sto