ترغب بنشر مسار تعليمي؟ اضغط هنا

Localization and Duality for ABJM Latitude Wilson Loops

128   0   0.0 ( 0 )
 نشر من قبل Luigi Guerrini
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigate several aspects of BPS latitude Wilson loops in gauge theories in three dimensions with $mathcal{N}ge 4$ supersymmetry. We derive a matrix model for the bosonic latitude Wilson loop in ABJM using supersymmetric localization, and show how to extend the computation to more general Chern-Simons-matter theories. We then define latitude type Wilson and vortex loop operators in theories without Chern-Simons terms, and explore a connection to the recently derived superalgebra defining local Higgs and Coulomb branch operators in these theories. Finally, we identify a BPS loop operator dual to the bosonic latitude Wilson loop which is a novel bound state of Wilson and vortex loops, defined using a worldvolume supersymmetric quantum mechanics.



قيم البحث

اقرأ أيضاً

In ABJ(M) theory, we propose a matrix model for the exact evaluation of BPS Wilson loops on a latitude circular contour, so providing a new weak-strong interpolation tool. Intriguingly, the matrix model turns out to be a particular case of that compu ting torus knot invariants in $U(N_1|N_2)$ Chern-Simons theory. At weak coupling we check our proposal against a three-loop computation, performed for generic framing, winding number and representation. The matrix model is amenable of a Fermi gas formulation, which we use to systematically compute the strong coupling and genus expansions. For the fermionic Wilson loop the leading planar behavior agrees with a previous string theory prediction. For the bosonic operator our result provides a clue for finding the corresponding string dual configuration. Our matrix model is consistent with recent proposals for computing Bremsstrahlung functions exactly in terms of latitude Wilson loops. As a by-product, we extend the conjecture for the exact $B^{theta}_{1/6}$ Bremsstrahlung function to generic representations and test it with a four-loop perturbative computation. Finally, we propose an exact prediction for $B_{1/2}$ at unequal gauge group ranks.
There is growing evidence that on-shell gluon scattering amplitudes in planar N=4 SYM theory are equivalent to Wilson loops evaluated over contours consisting of straight, light-like segments defined by the momenta of the external gluons. This equiva lence was first suggested at strong coupling using the AdS/CFT correspondence and has since been verified at weak coupling to one loop in perturbation theory. Here we perform an explicit two-loop calculation of the Wilson loop dual to the four-gluon scattering amplitude and demonstrate that the relation holds beyond one loop. We also propose an anomalous conformal Ward identity which uniquely fixes the form of the finite part (up to an additive constant) of the Wilson loop dual to four- and five-gluon amplitudes, in complete agreement with the BDS conjecture for the multi-gluon MHV amplitudes.
We study the algebra of BPS Wilson loops in 3d gauge theories with N=2 supersymmetry and Chern-Simons terms. We argue that new relations appear on the quantum level, and that in many cases this makes the algebra finite-dimensional. We use our results to propose the mapping of Wilson loops under Seiberg-like dualities and verify that the proposed map agrees with the exact results for expectation values of circular Wilson loops. In some cases we also relate the algebra of Wilson loops to the equivariant quantum K-ring of certain quasi projective varieties. This generalizes the connection between the Verlinde algebra and the quantum cohomology of the Grassmannian found by Witten.
In ABJ(M) theory a generalized cusp can be constructed out of the 1/6 BPS Wilson line by introducing an angle $varphi$ in the spacial contour and/or an angle $theta$ in the internal R-symmetry space. The small angles limits of its anomalous dimension are controlled by corresponding Bremsstrahlung functions. In this note we compute the internal space $theta$-Bremsstrahlung function to four loops at weak coupling in the planar limit. Based on this result, we propose an all order conjecture for the $theta$-Bremsstrahlung function.
There is substantial evidence that string theory on AdS_5 x S_5 is a holographic theory in which the number of degrees of freedom scales as the area of the boundary in Planck units. Precisely how the theory can describe bulk physics using only surfac e degrees of freedom is not well understood. A particularly paradoxical situation involves an event deep in the interior of the bulk space. The event must be recorded in the (Schroedinger Picture) state vector of the boundary theory long before a signal, such as a gravitational wave, can propagate from the event to the boundary. In a previous paper with Polchinski, we argued that the precursor operators which carry information stored in the wave during the time when it vanishes in a neighborhood of the boundary are necessarily non-local. In this paper we argue that the precursors cannot be products of local gauge invariant operators such as the energy momentum tensor. In fact gauge theories have a class of intrinsically non-local operators which cannot be built from local gauge invariant objects. These are the Wilson loops. We show that the precursors can be identified with Wilson loops whose spatial size is dictated by the UV-IR connection.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا