ﻻ يوجد ملخص باللغة العربية
Computational couplings of Markov chains provide a practical route to unbiased Monte Carlo estimation that can utilize parallel computation. However, these approaches depend crucially on chains meeting after a small number of transitions. For models that assign data into groups, e.g. mixture models, the obvious approaches to couple Gibbs samplers fail to meet quickly. This failure owes to the so-called label-switching problem; semantically equivalent relabelings of the groups contribute well-separated posterior modes that impede fast mixing and cause large meeting times. We here demonstrate how to avoid label switching by considering chains as exploring the space of partitions rather than labelings. Using a metric on this space, we employ an optimal transport coupling of the Gibbs conditionals. This coupling outperforms alternative couplings that rely on labelings and, on a real dataset, provides estimates more precise than usual ergodic averages in the limited time regime. Code is available at github.com/tinnguyen96/coupling-Gibbs-partition.
Comment on ``On Random Scan Gibbs Samplers [arXiv:0808.3852]
Logistic linear mixed model (LLMM) is one of the most widely used statistical models. Generally, Markov chain Monte Carlo algorithms are used to explore the posterior densities associated with Bayesian LLMMs. Polson, Scott and Windles (2013) Polya-Ga
We consider the problem of estimating a parameter associated to a Bayesian inverse problem. Treating the unknown initial condition as a nuisance parameter, typically one must resort to a numerical approximation of gradient of the log-likelihood and a
The emergence of big data has led to a growing interest in so-called convergence complexity analysis, which is the study of how the convergence rate of a Monte Carlo Markov chain (for an intractable Bayesian posterior distribution) scales as the unde
Hamiltonian Monte Carlo (HMC) is a popular sampling method in Bayesian inference. Recently, Heng & Jacob (2019) studied Metropolis HMC with couplings for unbiased Monte Carlo estimation, establishing a generic parallelizable scheme for HMC. However,