ترغب بنشر مسار تعليمي؟ اضغط هنا

Unbiased Estimation of the Gradient of the Log-Likelihood in Inverse Problems

117   0   0.0 ( 0 )
 نشر من قبل Kody Law
 تاريخ النشر 2020
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of estimating a parameter associated to a Bayesian inverse problem. Treating the unknown initial condition as a nuisance parameter, typically one must resort to a numerical approximation of gradient of the log-likelihood and also adopt a discretization of the problem in space and/or time. We develop a new methodology to unbiasedly estimate the gradient of the log-likelihood with respect to the unknown parameter, i.e. the expectation of the estimate has no discretization bias. Such a property is not only useful for estimation in terms of the original stochastic model of interest, but can be used in stochastic gradient algorithms which benefit from unbiased estimates. Under appropriate assumptions, we prove that our estimator is not only unbiased but of finite variance. In addition, when implemented on a single processor, we show that the cost to achieve a given level of error is comparable to multilevel Monte Carlo methods, both practically and theoretically. However, the new algorithm provides the possibility for parallel computation on arbitrarily many processors without any loss of efficiency, asymptotically. In practice, this means any precision can be achieved in a fixed, finite constant time, provided that enough processors are available.

قيم البحث

اقرأ أيضاً

Let X_1, ..., X_n be independent and identically distributed random vectors with a log-concave (Lebesgue) density f. We first prove that, with probability one, there exists a unique maximum likelihood estimator of f. The use of this estimator is attr active because, unlike kernel density estimation, the method is fully automatic, with no smoothing parameters to choose. Although the existence proof is non-constructive, we are able to reformulate the issue of computation in terms of a non-differentiable convex optimisation problem, and thus combine techniques of computational geometry with Shors r-algorithm to produce a sequence that converges to the maximum likelihood estimate. For the moderate or large sample sizes in our simulations, the maximum likelihood estimator is shown to provide an improvement in performance compared with kernel-based methods, even when we allow the use of a theoretical, optimal fixed bandwidth for the kernel estimator that would not be available in practice. We also present a real data clustering example, which shows that our methodology can be used in conjunction with the Expectation--Maximisation (EM) algorithm to fit finite mixtures of log-concave densities. An R version of the algorithm is available in the package LogConcDEAD -- Log-Concave Density Estimation in Arbitrary Dimensions.
Computational couplings of Markov chains provide a practical route to unbiased Monte Carlo estimation that can utilize parallel computation. However, these approaches depend crucially on chains meeting after a small number of transitions. For models that assign data into groups, e.g. mixture models, the obvious approaches to couple Gibbs samplers fail to meet quickly. This failure owes to the so-called label-switching problem; semantically equivalent relabelings of the groups contribute well-separated posterior modes that impede fast mixing and cause large meeting times. We here demonstrate how to avoid label switching by considering chains as exploring the space of partitions rather than labelings. Using a metric on this space, we employ an optimal transport coupling of the Gibbs conditionals. This coupling outperforms alternative couplings that rely on labelings and, on a real dataset, provides estimates more precise than usual ergodic averages in the limited time regime. Code is available at github.com/tinnguyen96/coupling-Gibbs-partition.
We present the Sequential Ensemble Transform (SET) method, an approach for generating approximate samples from a Bayesian posterior distribution. The method explores the posterior distribution by solving a sequence of discrete optimal transport probl ems to produce a series of transport plans which map prior samples to posterior samples. We prove that the sequence of Dirac mixture distributions produced by the SET method converges weakly to the true posterior as the sample size approaches infinity. Furthermore, our numerical results indicate that, when compared to standard Sequential Monte Carlo (SMC) methods, the SET approach is more robust to the choice of Markov mutation kernels and requires less computational efforts to reach a similar accuracy when used to explore complex posterior distributions. Finally, we describe adaptive schemes that allow to completely automate the use of the SET method.
A maximum likelihood methodology for a general class of models is presented, using an approximate Bayesian computation (ABC) approach. The typical target of ABC methods are models with intractable likelihoods, and we combine an ABC-MCMC sampler with so-called data cloning for maximum likelihood estimation. Accuracy of ABC methods relies on the use of a small threshold value for comparing simulations from the model and observed data. The proposed methodology shows how to use large threshold values, while the number of data-clones is increased to ease convergence towards an approximate maximum likelihood estimate. We show how to exploit the methodology to reduce the number of iterations of a standard ABC-MCMC algorithm and therefore reduce the computational effort, while obtaining reasonable point estimates. Simulation studies show the good performance of our approach on models with intractable likelihoods such as g-and-k distributions, stochastic differential equations and state-space models.
In Chib (1995), a method for approximating marginal densities in a Bayesian setting is proposed, with one proeminent application being the estimation of the number of components in a normal mixture. As pointed out in Neal (1999) and Fruhwirth-Schnatt er (2004), the approximation often fails short of providing a proper approximation to the true marginal densities because of the well-known label switching problem (Celeux et al., 2000). While there exist other alternatives to the derivation of approximate marginal densities, we reconsider the original proposal here and show as in Berkhof et al. (2003) and Lee et al. (2008) that it truly approximates the marginal densities once the label switching issue has been solved.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا