ﻻ يوجد ملخص باللغة العربية
Visual querying is essential for interactively exploring massive trajectory data. However, the data uncertainty imposes profound challenges to fulfill advanced analytics requirements. On the one hand, many underlying data does not contain accurate geographic coordinates, e.g., positions of a mobile phone only refer to the regions (i.e., mobile cell stations) in which it resides, instead of accurate GPS coordinates. On the other hand, domain experts and general users prefer a natural way, such as using a natural language sentence, to access and analyze massive movement data. In this paper, we propose a visual analytics approach that can extract spatial-temporal constraints from a textual sentence and support an effective query method over uncertain mobile trajectory data. It is built up on encoding massive, spatially uncertain trajectories by the semantic information of the POIs and regions covered by them, and then storing the trajectory documents in text database with an effective indexing scheme. The visual interface facilitates query condition specification, situation-aware visualization, and semantic exploration of large trajectory data. Usage scenarios on real-world human mobility datasets demonstrate the effectiveness of our approach.
Natural Language Search (NLS) extends the capabilities of search engines that perform keyword search allowing users to issue queries in a more natural language. The engine tries to understand the meaning of the queries and to map the query words to t
We introduce Uncertain Natural Language Inference (UNLI), a refinement of Natural Language Inference (NLI) that shifts away from categorical labels, targeting instead the direct prediction of subjective probability assessments. We demonstrate the fea
This paper presents a portable phenotyping system that is capable of integrating both rule-based and statistical machine learning based approaches. Our system utilizes UMLS to extract clinically relevant features from the unstructured text and then f
Surface electromyography (sEMG) is a non-invasive method of measuring neuromuscular potentials generated when the brain instructs the body to perform both fine and coarse locomotion. This technique has seen extensive investigation over the last two d
Utilizing Visualization-oriented Natural Language Interfaces (V-NLI) as a complementary input modality to direct manipulation for visual analytics can provide an engaging user experience. It enables users to focus on their tasks rather than worrying