The interplay between security and reliability is poorly understood. This paper shows how triple modular redundancy affects a side-channel attack (SCA). Our counterintuitive findings show that modular redundancy can increase SCA resiliency.
Todays mobile devices contain densely packaged system-on-chips (SoCs) with multi-core, high-frequency CPUs and complex pipelines. In parallel, sophisticated SoC-assisted security mechanisms have become commonplace for protecting device data, such as
trusted execution environments, full-disk and file-based encryption. Both advancements have dramatically complicated the use of conventional physical attacks, requiring the development of specialised attacks. In this survey, we consolidate recent developments in physical fault injections and side-channel attacks on modern mobile devices. In total, we comprehensively survey over 50 fault injection and side-channel attack papers published between 2009-2021. We evaluate the prevailing methods, compare existing attacks using a common set of criteria, identify several challenges and shortcomings, and suggest future directions of research.
In recent years, various deep learning techniques have been exploited in side channel attacks, with the anticipation of obtaining more appreciable attack results. Most of them concentrate on improving network architectures or putting forward novel al
gorithms, assuming that there are adequate profiling traces available to train an appropriate neural network. However, in practical scenarios, profiling traces are probably insufficient, which makes the network learn deficiently and compromises attack performance. In this paper, we investigate a kind of data augmentation technique, called mixup, and first propose to exploit it in deep-learning based side channel attacks, for the purpose of expanding the profiling set and facilitating the chances of mounting a successful attack. We perform Correlation Power Analysis for generated traces and original traces, and discover that there exists consistency between them regarding leakage information. Our experiments show that mixup is truly capable of enhancing attack performance especially for insufficient profiling traces. Specifically, when the size of the training set is decreased to 30% of the original set, mixup can significantly reduce acquired attacking traces. We test three mixup parameter values and conclude that generally all of them can bring about improvements. Besides, we compare three leakage models and unexpectedly find that least significant bit model, which is less frequently used in previous works, actually surpasses prevalent identity model and hamming weight model in terms of attack results.
Numerous previous works have studied deep learning algorithms applied in the context of side-channel attacks, which demonstrated the ability to perform successful key recoveries. These studies show that modern cryptographic devices are increasingly t
hreatened by side-channel attacks with the help of deep learning. However, the existing countermeasures are designed to resist classical side-channel attacks, and cannot protect cryptographic devices from deep learning based side-channel attacks. Thus, there arises a strong need for countermeasures against deep learning based side-channel attacks. Although deep learning has the high potential in solving complex problems, it is vulnerable to adversarial attacks in the form of subtle perturbations to inputs that lead a model to predict incorrectly. In this paper, we propose a kind of novel countermeasures based on adversarial attacks that is specifically designed against deep learning based side-channel attacks. We estimate several models commonly used in deep learning based side-channel attacks to evaluate the proposed countermeasures. It shows that our approach can effectively protect cryptographic devices from deep learning based side-channel attacks in practice. In addition, our experiments show that the new countermeasures can also resist classical side-channel attacks.
Background and Objectives: Substitution-box (s-box) is one of the essential components to create confusion and nonlinear properties in cryptography. To strengthening a cipher against various attacks, including side channel attacks, these boxes need t
o have numerous security properties. In this paper, a novel method to generate s-boxes is introduced aimed at improving the resistance of s-boxes against side channel attacks. Methods: In the preprocessing phase of this approach, a suitable initial s-box which has some basic security properties is generated by adopting a fast algorithm. Then, in the main stage, using the initial s-box, we generate new s-boxes which not only have the properties of the initial S-box but also have been significantly improved under another set of security properties. To do this, new s-boxes are generated using a genetic algorithm on a particular subset of the linear combination set of coordinate functions of the initial s-box in the preprocessing stage. Results: The performed experiments demonstrate that the values of all security properties of these new s-boxes, especially the measures of transparency order, signal-to-noise ratio, confusion coefficient, bijection property, fixed point, and opposite fixed points, have been substantially improved. For example, our experiments indicate that 70, 220, 2071, 43, and 406 s-boxes are found better than the initial s-box, respectively, in the dimensions of 4x4 through 8x8 Conclusion: In this article, a new s-box construction method is introduced in which the properties related to side channel attacks are improved, without reducing other security properties. Besides, some results obtained from generated s-boxes in the dimensions of 4x4 through 8x8 demonstrated that the generated s-boxes are not only improved relative to the initial s-box, but in some cases, considerably better than some well-known s-boxes.
In recent years, the convolutional neural networks (CNNs) have received a lot of interest in the side-channel community. The previous work has shown that CNNs have the potential of breaking the cryptographic algorithm protected with masking or desync
hronization. Before, several CNN models have been exploited, reaching the same or even better level of performance compared to the traditional side-channel attack (SCA). In this paper, we investigate the architecture of Residual Network and build a new CNN model called attention network. To enhance the power of the attention network, we introduce an attention mechanism - Convolutional Block Attention Module (CBAM) and incorporate CBAM into the CNN architecture. CBAM points out the informative points of the input traces and makes the attention network focus on the relevant leakages of the measurements. It is able to improve the performance of the CNNs. Because the irrelevant points will introduce the extra noises and cause a worse performance of attacks. We compare our attention network with the one designed for the masking AES implementation called ASCAD network in this paper. We show that the attention network has a better performance than the ASCAD network. Finally, a new visualization method, named Class Gradient Visualization (CGV) is proposed to recognize which points of the input traces have a positive influence on the predicted result of the neural networks. In another aspect, it can explain why the attention network is superior to the ASCAD network. We validate the attention network through extensive experiments on four public datasets and demonstrate that the attention network is efficient in different AES implementations.