ترغب بنشر مسار تعليمي؟ اضغط هنا

Sparse Array Beampattern Synthesis via Majorization-Based ADMM

123   0   0.0 ( 0 )
 نشر من قبل Tong Wei
 تاريخ النشر 2021
  مجال البحث هندسة إلكترونية
والبحث باللغة English




اسأل ChatGPT حول البحث

Beampattern synthesis is a key problem in many wireless applications. With the increasing scale of MIMO antenna array, it is highly desired to conduct beampattern synthesis on a sparse array to reduce the power and hardware cost. In this paper, we consider conducting beampattern synthesis and sparse array construction jointly. In the formulated problem, the beampattern synthesis is designed by minimizing the matching error to the beampattern template, and the Shannon entropy function is first introduced to impose the sparsity of the array. Then, for this nonconvex problem, an iterative method is proposed by leveraging on the alternating direction multiplier method (ADMM) and the majorization minimization (MM). Simulation results demonstrate that, compared with the benchmark, our approach achieves a good trade-off between array sparsity and beampattern matching error with less runtime.



قيم البحث

اقرأ أيضاً

In this paper, we design an efficient quadrature amplitude modulation (QAM) signal detector for massive multiple-input multiple-output (MIMO) communication systems via the penalty-sharing alternating direction method of multipliers (PS-ADMM). Its mai n content is as follows: first, we formulate QAM-MIMO detection as a maximum-likelihood optimization problem with bound relaxation constraints. Decomposing QAM signals into a sum of multiple binary variables and exploiting introduced binary variables as penalty functions, we transform the detection optimization model to a non-convex sharing problem; second, a customized ADMM algorithm is presented to solve the formulated non-convex optimization problem. In the implementation, all variables can be solved analytically and in parallel; third, it is proved that the proposed PS-ADMM algorithm converges under mild conditions. Simulation results demonstrate the effectiveness of the proposed approach.
This work demonstrates a hardware-efficient support vector machine (SVM) training algorithm via the alternative direction method of multipliers (ADMM) optimizer. Low-rank approximation is exploited to reduce the dimension of the kernel matrix by empl oying the Nystr{o}m method. Verified in four datasets, the proposed ADMM-based training algorithm with rank approximation reduces 32$times$ of matrix dimension with only 2% drop in inference accuracy. Compared to the conventional sequential minimal optimization (SMO) algorithm, the ADMM-based training algorithm is able to achieve a 9.8$times$10$^7$ shorter latency for training 2048 samples. Hardware design techniques, including pre-computation and memory sharing, are proposed to reduce the computational complexity by 62% and the memory usage by 60%. As a proof of concept, an epileptic seizure detector chip is designed to demonstrate the effectiveness of the proposed hardware-efficient training algorithm. The chip achieves a 153,310$times$ higher energy efficiency and a 364$times$ higher throughput-to-area ratio for SVM training than a high-end CPU. This work provides a promising solution for edge devices which require low-power and real-time training.
In this work, we propose a novel strategy of adaptive sparse array beamformer design, referred to as regularized complementary antenna switching (RCAS), to swiftly adapt both array configuration and excitation weights in accordance to the dynamic env ironment for enhancing interference suppression. In order to achieve an implementable design of array reconfiguration, the RCAS is conducted in the framework of regularized antenna switching, whereby the full array aperture is collectively divided into separate groups and only one antenna in each group is switched on to connect with the processing channel. A set of deterministic complementary sparse arrays with good quiescent beampatterns is first designed by RCAS and full array data is collected by switching among them while maintaining resilient interference suppression. Subsequently, adaptive sparse array tailored for the specific environment is calculated and reconfigured based on the information extracted from the full array data. The RCAS is devised as an exclusive cardinality-constrained optimization, which is reformulated by introducing an auxiliary variable combined with a piece-wise linear function to approximate the $l_0$-norm function. A regularization formulation is proposed to solve the problem iteratively and eliminate the requirement of feasible initial search point. A rigorous theoretical analysis is conducted, which proves that the proposed algorithm is essentially an equivalent transformation of the original cardinality-constrained optimization. Simulation results validate the effectiveness of the proposed RCAS strategy.
MIMO transmit arrays allow for flexible design of the transmit beampattern. However, the large number of elements required to achieve certain performance using uniform linear arrays (ULA) maybe be too costly. This motivated the need for thinned array s by appropriately selecting a small number of elements so that the full array beampattern is preserved. In this paper, we propose Learn-to-Select (L2S), a novel machine learning model for selecting antennas from a dense ULA employing a combination of multiple Softmax layers constrained by an orthogonalization criterion. The proposed approach can be efficiently scaled for larger problems as it avoids the combinatorial explosion of the selection problem. It also offers a flexible array design framework as the selection problem can be easily formulated for any metric.
In this work we consider a multiple-input multiple-output (MIMO) dual-function radar-communication (DFRC) system that employs an orthogonal frequency division multiplexing (OFDM) and a differential phase shift keying (DPSK) modulation, and study the design of the radiated waveforms and of the receive filters employed by the radar and the users. The approach is communication-centric, in the sense that a radar-oriented objective is optimized under constraints on the average transmit power, the power leakage towards specific directions, and the error rate of each user, thus safeguarding the communication quality of service (QoS). We adopt a unified design approach allowing a broad family of radar objectives, including both estimation- and detection-oriented merit functions. We devise a suboptimal solution based on alternating optimization of the involved variables, a convex restriction of the feasible search set, and minorization-maximization, offering a single algorithm for all of the radar merit functions in the considered family. Finally, the performance is inspected through numerical examples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا