ﻻ يوجد ملخص باللغة العربية
This work demonstrates a hardware-efficient support vector machine (SVM) training algorithm via the alternative direction method of multipliers (ADMM) optimizer. Low-rank approximation is exploited to reduce the dimension of the kernel matrix by employing the Nystr{o}m method. Verified in four datasets, the proposed ADMM-based training algorithm with rank approximation reduces 32$times$ of matrix dimension with only 2% drop in inference accuracy. Compared to the conventional sequential minimal optimization (SMO) algorithm, the ADMM-based training algorithm is able to achieve a 9.8$times$10$^7$ shorter latency for training 2048 samples. Hardware design techniques, including pre-computation and memory sharing, are proposed to reduce the computational complexity by 62% and the memory usage by 60%. As a proof of concept, an epileptic seizure detector chip is designed to demonstrate the effectiveness of the proposed hardware-efficient training algorithm. The chip achieves a 153,310$times$ higher energy efficiency and a 364$times$ higher throughput-to-area ratio for SVM training than a high-end CPU. This work provides a promising solution for edge devices which require low-power and real-time training.
Current radio frequency (RF) sensors at the Edge lack the computational resources to support practical, in-situ training for intelligent spectrum monitoring, and sensor data classification in general. We propose a solution via Deep Delay Loop Reservo
Keyword spotting (KWS) provides a critical user interface for many mobile and edge applications, including phones, wearables, and cars. As KWS systems are typically always on, maximizing both accuracy and power efficiency are central to their utility
Quantum computing has noteworthy speedup over classical computing by taking advantage of quantum parallelism, i.e., the superposition of states. In particular, quantum search is widely used in various computationally hard problems. Grovers search alg
Neural networks have shown great potential in many applications like speech recognition, drug discovery, image classification, and object detection. Neural network models are inspired by biological neural networks, but they are optimized to perform m
In this paper, a joint task, spectrum, and transmit power allocation problem is investigated for a wireless network in which the base stations (BSs) are equipped with mobile edge computing (MEC) servers to jointly provide computational and communicat