ﻻ يوجد ملخص باللغة العربية
We investigate the ability of 4D Particle Tracking Velocimetry measurements at high particle density to explore intermittency and irreversibility in a turbulent swirling flow at various Reynolds numbers. For this, we devise suitable tools to remove the experimental noise, and compute the statistics of both Lagrangian velocity increments and wavelet coefficients of the Lagrangian power (the time derivative of the kinetic energy along a trajectory). We show that the signature of noise is strongest on short trajectories, and results in deviations from the regularity condition at small time scales. Considering only long trajectories to get rid of such effect, we obtain scaling regimes that are compatible with a reduced intermittency, meaning that long trajectories are also associated with areas of larger regularity. The scaling laws, both in time and Reynolds number, can be described by the multifractal model, with a log-normal spectrum and an intermittency parameter that is three times smaller than in the Eulerian case, where all the areas of the flow are taken into account.
We present Lagrangian one-particle statistics from the Risoe PTV experiment of a turbulent flow. We estimate the Lagrangian Kolmogorov constant $C_0$ and find that it is affected by the large scale inhomogeneities of the flow. The pdf of temporal vel
A stochastic model is derived to predict the turbulent torque produced by a swirling flow. It is a simple Langevin process, with a colored noise. Using the unified colored noise approximation, we derive analytically the PDF of the fluctuations of inj
The statistics of Lagrangian particles in turbulent flows is considered in the framework of a simple vortex model. Here, the turbulent velocity field is represented by a temporal sequence of Burgers vortices of different circulation, strain, and orie
We experimentally characterize the fluctuations of the non-homogeneous non-isotropic turbulence in an axisymmetric von Karman flow. We show that these fluctuations satisfy relations analogous to classical Fluctuation-Dissipation Relations (FDRs) in s
This article describes a video uploaded to the APS DFD Annual Meeting 2009 Gallery of Fluid Motion. The video contains both animations and still images from a three-dimensional volumetric velocimetry measurement set acquired in the flow around a Rushton turbine.