ﻻ يوجد ملخص باللغة العربية
We propose a deep inverse rendering framework for indoor scenes. From a single RGB image of an arbitrary indoor scene, we create a complete scene reconstruction, estimating shape, spatially-varying lighting, and spatially-varying, non-Lambertian surface reflectance. To train this network, we augment the SUNCG indoor scene dataset with real-world materials and render them with a fast, high-quality, physically-based GPU renderer to create a large-scale, photorealistic indoor dataset. Our inverse rendering network incorporates physical insights -- including a spatially-varying spherical Gaussian lighting representation, a differentiable rendering layer to model scene appearance, a cascade structure to iteratively refine the predictions and a bilateral solver for refinement -- allowing us to jointly reason about shape, lighting, and reflectance. Experiments show that our framework outperforms previous methods for estimating individual scene components, which also enables various novel applications for augmented reality, such as photorealistic object insertion and material editing. Code and data will be made publicly available.
In this work, we address the problem of jointly estimating albedo, normals, depth and 3D spatially-varying lighting from a single image. Most existing methods formulate the task as image-to-image translation, ignoring the 3D properties of the scene.
We propose a real-time method to estimate spatiallyvarying indoor lighting from a single RGB image. Given an image and a 2D location in that image, our CNN estimates a 5th order spherical harmonic representation of the lighting at the given location
Inverse rendering aims to estimate physical attributes of a scene, e.g., reflectance, geometry, and lighting, from image(s). Inverse rendering has been studied primarily for single objects or with methods that solve for only one of the scene attribut
We present SOLID-Net, a neural network for spatially-varying outdoor lighting estimation from a single outdoor image for any 2D pixel location. Previous work has used a unified sky environment map to represent outdoor lighting. Instead, we generate s
We propose DeRenderNet, a deep neural network to decompose the albedo and latent lighting, and render shape-(in)dependent shadings, given a single image of an outdoor urban scene, trained in a self-supervised manner. To achieve this goal, we propose