ترغب بنشر مسار تعليمي؟ اضغط هنا

Software/Hardware Co-design for Multi-modal Multi-task Learning in Autonomous Systems

152   0   0.0 ( 0 )
 نشر من قبل Callie Hao
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Optimizing the quality of result (QoR) and the quality of service (QoS) of AI-empowered autonomous systems simultaneously is very challenging. First, there are multiple input sources, e.g., multi-modal data from different sensors, requiring diverse data preprocessing, sensor fusion, and feature aggregation. Second, there are multiple tasks that require various AI models to run simultaneously, e.g., perception, localization, and control. Third, the computing and control system is heterogeneous, composed of hardware components with varied features, such as embedded CPUs, GPUs, FPGAs, and dedicated accelerators. Therefore, autonomous systems essentially require multi-modal multi-task (MMMT) learning which must be aware of hardware performance and implementation strategies. While MMMT learning has been attracting intensive research interests, its applications in autonomous systems are still underexplored. In this paper, we first discuss the opportunities of applying MMMT techniques in autonomous systems and then discuss the unique challenges that must be solved. In addition, we discuss the necessity and opportunities of MMMT model and hardware co-design, which is critical for autonomous systems especially with power/resource-limited or heterogeneous platforms. We formulate the MMMT model and heterogeneous hardware implementation co-design as a differentiable optimization problem, with the objective of improving the solution quality and reducing the overall power consumption and critical path latency. We advocate for further explorations of MMMT in autonomous systems and software/hardware co-design solutions.

قيم البحث

اقرأ أيضاً

Deep neural networks (DNNs) have substantial computational requirements, which greatly limit their performance in resource-constrained environments. Recently, there are increasing efforts on optical neural networks and optical computing based DNNs ha rdware, which bring significant advantages for deep learning systems in terms of their power efficiency, parallelism and computational speed. Among them, free-space diffractive deep neural networks (D$^2$NNs) based on the light diffraction, feature millions of neurons in each layer interconnected with neurons in neighboring layers. However, due to the challenge of implementing reconfigurability, deploying different DNNs algorithms requires re-building and duplicating the physical diffractive systems, which significantly degrades the hardware efficiency in practical application scenarios. Thus, this work proposes a novel hardware-software co-design method that enables robust and noise-resilient Multi-task Learning in D$^2$NNs. Our experimental results demonstrate significant improvements in versatility and hardware efficiency, and also demonstrate the robustness of proposed multi-task D$^2$NN architecture under wide noise ranges of all system components. In addition, we propose a domain-specific regularization algorithm for training the proposed multi-task architecture, which can be used to flexibly adjust the desired performance for each task.
General embeddings like word2vec, GloVe and ELMo have shown a lot of success in natural language tasks. The embeddings are typically extracted from models that are built on general tasks such as skip-gram models and natural language generation. In th is paper, we extend the work from natural language understanding to multi-modal architectures that use audio, visual and textual information for machine learning tasks. The embeddings in our network are extracted using the encoder of a transformer model trained using multi-task training. We use person identification and automatic speech recognition as the tasks in our embedding generation framework. We tune and evaluate the embeddings on the downstream task of emotion recognition and demonstrate that on the CMU-MOSEI dataset, the embeddings can be used to improve over previous state of the art results.
This paper proposes a method to gain extra supervision via multi-task learning for multi-modal video question answering. Multi-modal video question answering is an important task that aims at the joint understanding of vision and language. However, e stablishing large scale dataset for multi-modal video question answering is expensive and the existing benchmarks are relatively small to provide sufficient supervision. To overcome this challenge, this paper proposes a multi-task learning method which is composed of three main components: (1) multi-modal video question answering network that answers the question based on the both video and subtitle feature, (2) temporal retrieval network that predicts the time in the video clip where the question was generated from and (3) modality alignment network that solves metric learning problem to find correct association of video and subtitle modalities. By simultaneously solving related auxiliary tasks with hierarchically shared intermediate layers, the extra synergistic supervisions are provided. Motivated by curriculum learning, multi task ratio scheduling is proposed to learn easier task earlier to set inductive bias at the beginning of the training. The experiments on publicly available dataset TVQA shows state-of-the-art results, and ablation studies are conducted to prove the statistical validity.
While robot learning has demonstrated promising results for enabling robots to automatically acquire new skills, a critical challenge in deploying learning-based systems is scale: acquiring enough data for the robot to effectively generalize broadly. Imitation learning, in particular, has remained a stable and powerful approach for robot learning, but critically relies on expert operators for data collection. In this work, we target this challenge, aiming to build an imitation learning system that can continuously improve through autonomous data collection, while simultaneously avoiding the explicit use of reinforcement learning, to maintain the stability, simplicity, and scalability of supervised imitation. To accomplish this, we cast the problem of imitation with autonomous improvement into a multi-task setting. We utilize the insight that, in a multi-task setting, a failed attempt at one task might represent a successful attempt at another task. This allows us to leverage the robots own trials as demonstrations for tasks other than the one that the robot actually attempted. Using an initial dataset of multi-task demonstration data, the robot autonomously collects trials which are only sparsely labeled with a binary indication of whether the trial accomplished any useful task or not. We then embed the trials into a learned latent space of tasks, trained using only the initial demonstration dataset, to draw similarities between various trials, enabling the robot to achieve one-shot generalization to new tasks. In contrast to prior imitation learning approaches, our method can autonomously collect data with sparse supervision for continuous improvement, and in contrast to reinforcement learning algorithms, our method can effectively improve from sparse, task-agnostic reward signals.
As a step towards developing zero-shot task generalization capabilities in reinforcement learning (RL), we introduce a new RL problem where the agent should learn to execute sequences of instructions after learning useful skills that solve subtasks. In this problem, we consider two types of generalizations: to previously unseen instructions and to longer sequences of instructions. For generalization over unseen instructions, we propose a new objective which encourages learning correspondences between similar subtasks by making analogies. For generalization over sequential instructions, we present a hierarchical architecture where a meta controller learns to use the acquired skills for executing the instructions. To deal with delayed reward, we propose a new neural architecture in the meta controller that learns when to update the subtask, which makes learning more efficient. Experimental results on a stochastic 3D domain show that the proposed ideas are crucial for generalization to longer instructions as well as unseen instructions.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا