ﻻ يوجد ملخص باللغة العربية
The transport of self-propelled particle confined in corrugated channel with L{e}vy noise is investigated. The parameters of L{e}vy noise(i.e., the stability index, the asymmetry parameter, the scale parameter, the location parameter) and the parameters of confined corrugated channel(i.e., the compartment length, the channel width and the bottleneck size) have joint effects on the system. There exits flow reverse phenomena with increasing mean parameter. Left distribution noise will induce $-x$ directional transport and right distribution noise will induce $+x$ directional transport. The distribution skewness will effect the moving direction of the particle. The average velocity shows complex behavior with increasing stability index. The angle velocity and the angle Gaussian noise have little effects on the particle transport.
The directional transport of finite size self-propelled Brownian particles confined in a 2D zigzag channel with colored noise is investigated. The noises(noise parallel to x-axis and y-axis), the asymmetry parameter {Delta}k, the ratio f(ratio of the
We present theory and experiments demonstrating the existence of invariant manifolds that impede the motion of microswimmers in two-dimensional fluid flows. One-way barriers are apparent in a hyperbolic fluid flow that block the swimming of both smoo
We numerically simulate the transport of elliptic Janus particles along narrow two-dimensional channels with reflecting walls. The self-propulsion velocity of the particle is oriented along either their major (prolate) or minor axis (oblate). In smoo
We study the behaviour of interacting self-propelled particles, whose self-propulsion speed decreases with their local density. By combining direct simulations of the microscopic model with an analysis of the hydrodynamic equations obtained by explic
Recent experiments (G. Ariel, et al., Nature Comm. 6, 8396 (2015)) revealed an intriguing behavior of swarming bacteria: they fundamentally change their collective motion from simple diffusion into a superdiffusive L{e}vy walk dynamics. We introduce