ترغب بنشر مسار تعليمي؟ اضغط هنا

Numerics and analysis of Cahn--Hilliard critical points

77   0   0.0 ( 0 )
 نشر من قبل Maria Westdickenberg
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We explore recent progress and open questions concerning local minima and saddle points of the Cahn--Hilliard energy in $dgeq 2$ and the critical parameter regime of large system size and mean value close to $-1$. We employ the String Method of E, Ren, and Vanden-Eijnden -- a numerical algorithm for computing transition pathways in complex systems -- in $d=2$ to gain additional insight into the properties of the minima and saddle point. Motivated by the numerical observations, we adapt a method of Caffarelli and Spruck to study convexity of level sets in $dgeq 2$.

قيم البحث

اقرأ أيضاً

The Cahn-Hilliard energy landscape on the torus is explored in the critical regime of large system size and mean value close to $-1$. Existence and properties of a droplet-shaped local energy minimizer are established. A standard mountain pass argume nt leads to the existence of a saddle point whose energy is equal to the energy barrier, for which a quantitative bound is deduced. In addition, finer properties of the local minimizer and appropriately defined constrained minimizers are deduced. The proofs employ the $Gamma$-limit (identified in a previous work), quantitative isoperimetric inequalities, variational arguments, and Steiner symmetrization.
We study the asymptotic properties of the stochastic Cahn-Hilliard equation with the logarithmic free energy by establishing different dimension-free Harnack inequalities according to various kinds of noises. The main characteristics of this equation are the singularities of the logarithmic free energy at 1 and --1 and the conservation of the mass of the solution in its spatial variable. Both the space-time colored noise and the space-time white noise are considered. For the highly degenerate space-time colored noise, the asymptotic log-Harnack inequality is established under the so-called essentially elliptic conditions. And the Harnack inequality with power is established for non-degenerate space-time white noise.
254 - Wenbo Li , Abner J. Salgado 2021
We develop the theory of fractional gradient flows: an evolution aimed at the minimization of a convex, l.s.c.~energy, with memory effects. This memory is characterized by the fact that the negative of the (sub)gradient of the energy equals the so-ca lled Caputo derivative of the state. We introduce the notion of energy solutions, for which we provide existence, uniqueness and certain regularizing effects. We also consider Lipschitz perturbations of this energy. For these problems we provide an a posteriori error estimate and show its reliability. This estimate depends only on the problem data, and imposes no constraints between consecutive time-steps. On the basis of this estimate we provide an a priori error analysis that makes no assumptions on the smoothness of the solution.
The phase separation of an isothermal incompressible binary fluid in a porous medium can be described by the so-called Brinkman equation coupled with a convective Cahn-Hilliard (CH) equation. The former governs the average fluid velocity $mathbf{u}$, while the latter rules evolution of $varphi$, the difference of the (relative) concentrations of the two phases. The two equations are known as the Cahn-Hilliard-Brinkman (CHB) system. In particular, the Brinkman equation is a Stokes-like equation with a forcing term (Korteweg force) which is proportional to $mu ablavarphi$, where $mu$ is the chemical potential. When the viscosity vanishes, then the system becomes the Cahn-Hilliard-Hele-Shaw (CHHS) system. Both systems have been studied from the theoretical and the numerical viewpoints. However, theoretical results on the CHHS system are still rather incomplete. For instance, uniqueness of weak solutions is unknown even in 2D. Here we replace the usual CH equation with its physically more relevant nonlocal version. This choice allows us to prove more about the corresponding nonlocal CHHS system. More precisely, we first study well-posedness for the CHB system, endowed with no-slip and no-flux boundary conditions. Then, existence of a weak solution to the CHHS system is obtained as a limit of solutions to the CHB system. Stronger assumptions on the initial datum allow us to prove uniqueness for the CHHS system. Further regularity properties are obtained by assuming additional, though reasonable, assumptions on the interaction kernel. By exploiting these properties, we provide an estimate for the difference between the solution to the CHB system and the one to the CHHS system with respect to viscosity.
We introduce a fractional variant of the Cahn-Hilliard equation settled in a bounded domain $Omega$ of $R^N$ and complemented with homogeneous Dirichlet boundary conditions of solid type (i.e., imposed in the entire complement of $Omega$). After sett ing a proper functional framework, we prove existence and uniqueness of weak solutions to the related initial-boundary value problem. Then, we investigate some significant singular limits obtained as the order of either of the fractional Laplacians appearing in the equation is let tend to 0. In particular, we can rigorously prove that the fractional Allen-Cahn, fractional porous medium, and fractional fast-diffusion equations can be obtained in the limit. Finally, in the last part of the paper, we discuss existence and qualitative properties of stationary solutions of our problem and of its singular limits.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا