ﻻ يوجد ملخص باللغة العربية
In this paper we study the set of prime ideals in vector lattices and how the properties of the prime ideals structure the vector lattice in question. The different properties that will be considered are firstly, that all or none of the prime ideals are order dense, secondly, that there are only finitely many prime ideals, thirdly, that every prime ideal is principal, and lastly, that every ascending chain of prime ideals is stationary (a property that we refer to as prime Noetherian). We also completely characterize the prime ideals in vector lattices of piecewise polynomials, which turns out to be an interesting class of vector lattices for studying principal prime ideals and ascending chains of prime ideals.
The main focus of this paper is on the problem of relating an ideal $I$ in the polynomial ring $mathbb Q[x_1, dots, x_n]$ to a corresponding ideal in $mathbb F_p[x_1,dots, x_n]$ where $p$ is a prime number; in other words, the textit{reduction modulo
We study prime ideals in skew power series rings $T:=R[[y;tau,delta]]$, for suitably conditioned right noetherian complete semilocal rings $R$, automorphisms $tau$ of $R$, and $tau$-derivations $delta$ of $R$. These rings were introduced by Venjakob,
The main aim of this article is to study the relation between $F$-injective singularity and the Frobenius closure of parameter ideals in Noetherian rings of positive characteristic. The paper consists of the following themes, including many other top
Let $R$ be a commutative ring with identity. In this paper, we introduce the concept of weakly $1$-absorbing prime ideals which is a generalization of weakly prime ideals. A proper ideal $I$ of $R$ is called weakly $1$-absorbing prime if for all nonu
We construct a local Cohen-Macaulay ring $R$ with a prime ideal $mathfrak{p}inspec(R)$ such that $R$ satisfies the uniform Auslander condition (UAC), but the localization $R_{mathfrak{p}}$ does not satisfy Auslanders condition (AC). Given any positiv