ﻻ يوجد ملخص باللغة العربية
We consider multi-energy level distributions in the SYK model, and in particular, the role of global fluctuations in the density of states of the SYK model. The connected contributions to the moments of the density of states go to zero as $N to infty$, however, they are much larger than the standard RMT correlations. We provide a diagrammatic description of the leading behavior of these connected moments, showing that the dominant diagrams are given by 1PI cactus graphs, and derive a vector model of the couplings which reproduces these results. We generalize these results to the first subleading corrections, and to fluctuations of correlation functions. In either case, the new set of correlations between traces (i.e. between boundaries) are not associated with, and are much larger than, the ones given by topological wormholes. The connected contributions that we discuss are the beginning of an infinite series of terms, associated with more and more information about the ensemble of couplings, which hints towards the dual of a single realization. In particular, we suggest that incorporating them in the gravity description requires the introduction of new, lighter and lighter, fields in the bulk with fluctuating boundary couplings.
The concepts of operator size and computational complexity play important roles in the study of quantum chaos and holographic duality because they help characterize the structure of time-evolving Heisenberg operators. It is particularly important to
We compute the exact density of states and 2-point function of the $mathcal{N} =2$ super-symmetric SYK model in the large $N$ double-scaled limit, by using combinatorial tools that relate the moments of the distribution to sums over oriented chord di
We investigate two sparse Sachdev-Ye-Kitaev (SYK) systems coupled by a bilinear term as a holographic quantum mechanical description of an eternal traversable wormhole in the low temperature limit. Each SYK system consists of $N$ Majorana fermions co
We use numerical bootstrap techniques to study correlation functions of scalars transforming in the adjoint representation of $SU(N)$ in three dimensions. We obtain upper bounds on operator dimensions for various representations and study their depen
We study the SYK$_{2}$ model of $N$ Majorana fermions with random quadratic interactions through a detailed spectral analysis and by coupling the model to 2- and 4-point sources. In particular, we define the generalized spectral form factor and level