ﻻ يوجد ملخص باللغة العربية
As a wide variety of quantum computing platforms become available, methods for assessing and comparing the performance of these devices are of increasing interest and importance. Inspired by the success of single-qubit error rate computations for tracking the progress of gate-based quantum computers, this work proposes a Quantum Annealing Single-qubit Assessment (QASA) protocol for quantifying the performance of individual qubits in quantum annealing computers. The proposed protocol scales to large quantum annealers with thousands of qubits and provides unique insights into the distribution of qubit properties within a particular hardware device. The efficacy of the QASA protocol is demonstrated by analyzing the properties of a D-Wave 2000Q system, revealing unanticipated correlations in the qubit performance of that device. A study repeating the QASA protocol at different annealing times highlights how the method can be utilized to understand the impact of annealing parameters on qubit performance. Overall, the proposed QASA protocol provides a useful tool for assessing the performance of current and emerging quantum annealing devices.
As a variety of quantum computing models and platforms become available, methods for assessing and comparing the performance of these devices are of increasing interest and importance. Despite being built of the same fundamental computational unit, r
An overview of current status and prospects of the development of quantum computer hardware based on inorganic crystals doped with rare-earth ions is presented. Major parts of the experimental work in this area has been done in two places, Canberra,
Satisfiability filters, introduced by S. A. Weaver et al. in 2014, are a new and promising type of filters to address set membership testing. In order to construct satisfiability filters, it is necessary to find disparate solutions to hard random $k$
The accurate implementation of quantum gates is essential for the realisation of quantum algorithms and digital quantum simulations. This accuracy may be increased on noisy hardware through the variational optimisation of gates, however the experimen
Scaling the number of qubits while maintaining high-fidelity quantum gates remains a key challenge for quantum computing. Presently, superconducting quantum processors with >50-qubits are actively available. For such systems, fixed-frequency transmon