ترغب بنشر مسار تعليمي؟ اضغط هنا

The Tarantula Massive Binary Monitoring V. R 144: a wind-eclipsing binary with a total mass > 140 Msun

96   0   0.0 ( 0 )
 نشر من قبل Tomer Shenar
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

R 144 is the visually brightest WR star in the Large Magellanic Cloud (LMC). R 144 was reported to be a binary, making it potentially the most massive binary thus observed. We perform a comprehensive spectral, photometric, orbital, and polarimetric analysis of R 144. R 144 is an eccentric (e=0.51) 74.2-d binary comprising two relatively evolved (age~2 Myr), H-rich WR stars. The hotter primary (WN5/6h, T=50 kK) and the cooler secondary (WN6/7h,T=45kK) have nearly equal masses. The combination of low rotation and H-depletion observed in the system is well reproduced by contemporary evolution models that include boosted mass-loss at the upper-mass end. The systemic velocity of R 144 and its relative isolation suggest that it was ejected as a runaway from the neighbouring R 136 cluster. The optical light-curve shows a clear orbital modulation that can be well explained as a combination of two processes: excess emission stemming from wind-wind collisions and double wind eclipses. Our light-curve model implies an orbital inclination of i=60.4+-1.5deg, resulting in accurately constrained dynamical masses of 74+-4 and 69+-4 Msun. Assuming that both binary components are core H-burning, these masses are difficult to reconcile with the derived luminosities (logL1,2 = 6.44, 6.39 [Lsun]), which correspond to evolutionary masses of the order of 110 and 100Msun, respectively. Taken at face value, our results imply that both stars have high classical Eddington factors of Gamma_e = 0.78+-0.1. If the stars are on the main sequence, their derived radii (~25Rsun) suggest that they are only slightly inflated, even at this high Eddington factor. Alternatively, the stars could be core-He burning, strongly inflated from the regular size of classical Wolf-Rayet stars (~1Rsun), a scenario that could help resolve the observed mass discrepancy.

قيم البحث

اقرأ أيضاً

75 - L. Mahy , L. A. Almeida , H. Sana 2019
A high fraction of massive stars are found to be binaries but only a few of them are reported as photometrically variable. By studying the populations of SB2 in the 30 Doradus region, we found a subset of them that have photometry from the OGLE proje ct and that display variations in their light curves related to orbital motions. The goal of this study is to determine the dynamical masses and radii of the 26 binary components to investigate the mass-discrepancy problem and to provide an empirical mass-luminosity relation for the LMC. We use the PHOEBE programme to perform a systematic analysis of the OGLE V and I light curves obtained for 13 binary systems in 30 Dor. We adopt Teff, and orbital parameters derived previously to obtain the inclinations of the systems and the parameters of the individual components. Three systems display eclipses in their light curves, while the others only display ellipsoidal variations. We classify two systems as over-contact, five as semi-detached, and four as detached. The two remaining systems have uncertain configurations due to large uncertainties on their inclinations. The fact that systems display ellipsoidal variations has a significant impact on the inclination errors. From the dynamical masses, luminosities, and radii, we provide LMC-based empirical mass-luminosity and mass-radius relations, and we compare them to other relations given for the Galaxy, the LMC, and the SMC. These relations differ for different mass ranges, but do not seem to depend on the metallicity regimes. We also compare the dynamical, spectroscopic, and evolutionary masses of the stars in our sample. While the dynamical and spectroscopic masses agree with each other, the evolutionary masses are systematically higher, at least for stars in semi-detached systems. This suggests that the mass discrepancy can be partly explained by past or ongoing interactions between the stars.
We report the discovery and characterisation of a new M-dwarf binary, with component masses and radii of M1 = 0.244 -0.003/+0.003 Msun, R1 = 0.261 -0.009/+0.006 Rsun, M2 = 0.179 -0.001/+0.002 Msun, R2 = 0.218 -0.011/+0.007 Rsun, and orbital period of ~4.1 days. The M-dwarf binary HATS551-027 (LP 837-20) was identified as an eclipsing binary by the HATSouth survey, and characterised by a series of high precision photometric observations of the eclipse events, and spectroscopic determinations of the atmospheric parameters and radial velocity orbits. HATS551-027 is one of few systems with both stellar components lying in the fully-convective regime of very low mass stars, and can serve as a test for stellar interior models. The radius of HATS551-027A is consistent with models to 1 sigma, whilst HATS551-027B is inflated by 9% at 2 sigma significance. We measure the effective temperatures for the two stellar components to be Teff,1 = 3190 +/- 100 K and Teff,2 = 2990+/-110 K, both are slightly cooler than theoretical models predict, but consistent with other M-dwarfs of similar masses that have previously been studied. We also measure significant Halpha emission from both components of the binary system, and discuss this in the context of the correlation between stellar activity and the discrepancies between the observed and model temperatures.
We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300Msun, making it a candidate for the m ost massive star known. While the primary is a known late type, H-rich Wolf-Rayet star (WN6h), the secondary could not be so far unambiguously detected. Using moderate resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary, and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0.78 and minimum masses of M1 sin^3 i ~ M2 sin^3 i ~ 13 +- 2 Msun, with q = M2 / M1 = 1.01 +- 0.07. An analysis of emission excess stemming from a wind-wind collision yields a similar inclination to that obtained from polarimetry (i = 39 +- 6deg). Our analysis thus implies M1 = 53^{+40}_{-20} and M2 = 54^{+40}_{-20} Msun, excluding M1 > 300Msun. A detailed comparison with evolution tracks calculated for single and binary stars, as well as the high eccentricity, suggest that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of ~ 80 Msun and initial masses of Mi,1 ~ 105 and Mi,2 ~ 90Msun, consistent with the upper limits of our derived orbital masses, and would imply an age of ~2.2 Myr.
Accurate stellar parameters of individual objects in binary systems are essential to constrain the effects of binarity on stellar evolution. These parameters serve as a prerequisite to probing existing and future theoretical evolutionary models. We a im to derive the atmospheric parameters of the 31 SB2s in the TMBM sample. This sample, composed of detached, semi-detached and contact systems with at least one of the components classified as an O star, is an excellent test-bed to study how binarity can impact our knowledge of the evolution of massive stars. 32 epochs of FLAMES/GIRAFFE spectra are analysed using spectral disentangling to construct the individual spectra of 62 components. We apply the CMFGEN atmosphere code to determine their stellar parameters and their He, C and N surface abundances. From these properties, we show that the effects of tides on chemical mixing are limited. Components on longer-period orbits show higher nitrogen enrichment at their surface than those on shorter-period orbits, in contrast to expectations of rotational or tidal mixing, implying that other mechanisms play a role in this process. Components filling their Roche lobe are mass donors. They exhibit higher nitrogen content at their surface and rotate more slowly than their companions. By accreting new material, their companions spin faster and are rejuvenated. Their locations in the N-vsini diagram tend to show that binary products are good candidates to populate the two groups of stars (slowly rotating, nitrogen-enriched and rapidly rotating non-enriched) that cannot be reproduced through single-star population synthesis. This sample is the largest sample of binaries to be studied in such a homogeneous way. The study of these objects gives us strong observational constraints to test theoretical binary evolutionary tracks.
231 - L.A. Almeida , H. Sana , W. Taylor 2016
Massive binaries (MBs) play a crucial role in the Universe. Knowing the distributions of their orbital parameters (OPs) is important for a wide range of topics, from stellar feedback to binary evolution channels, from the distribution of supernova ty pes to gravitational wave progenitors, yet, no direct measurements exist outside the Milky Way. The Tarantula Massive Binary Monitoring was designed to help fill this gap by obtaining multi-epoch radial velocity monitoring of 102 MBs in the 30 Dor. In this paper, we analyse 32 VLT/FLAMES observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single- and 31 double-lined spectroscopic binaries. Overall, the OPs and binary fraction are remarkably similar across the 30 Dor region and compared to existing Galactic samples (GSs). This indicates that within these domains environmental effects are of second order in shaping the properties of MBs. A small difference is found in the distribution of orbital periods (OrbPs), which is slightly flatter (in log space) in 30 Dor than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, OrbPs in 30 Dor can be as short as 1.1 d; somewhat shorter than seen in GSs. Equal mass binaries q>0.95 in 30 Dor are all found outside NGC 2070 the very young and massive cluster at 30 Dors core. One outstanding exception however is the fact that earliest spectral types (O2-O7) tend to have shorter OrbPs than latter (O9.2-O9.7). Our results point to a relative universality of the incidence rate of MBs and their OPs in the metallicity range from solar ($Z_{odot}$) to about $0.5Z_{odot}$. This provides the first direct constraints on MB properties in massive star-forming galaxies at the Universes peak of star formation at redshifts z~1 to 2, which are estimated to have $Z~0.5Z_{odot}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا