ترغب بنشر مسار تعليمي؟ اضغط هنا

The Tarantula Massive Binary Monitoring: I. Observational campaign and OB-type spectroscopic binaries

232   0   0.0 ( 0 )
 نشر من قبل Leonardo A. Almeida
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Massive binaries (MBs) play a crucial role in the Universe. Knowing the distributions of their orbital parameters (OPs) is important for a wide range of topics, from stellar feedback to binary evolution channels, from the distribution of supernova types to gravitational wave progenitors, yet, no direct measurements exist outside the Milky Way. The Tarantula Massive Binary Monitoring was designed to help fill this gap by obtaining multi-epoch radial velocity monitoring of 102 MBs in the 30 Dor. In this paper, we analyse 32 VLT/FLAMES observations of 93 O- and 7 B-type binaries. We performed a Fourier analysis and obtained orbital solutions for 82 systems: 51 single- and 31 double-lined spectroscopic binaries. Overall, the OPs and binary fraction are remarkably similar across the 30 Dor region and compared to existing Galactic samples (GSs). This indicates that within these domains environmental effects are of second order in shaping the properties of MBs. A small difference is found in the distribution of orbital periods (OrbPs), which is slightly flatter (in log space) in 30 Dor than in the Galaxy, although this may be compatible within error estimates and differences in the fitting methodology. Also, OrbPs in 30 Dor can be as short as 1.1 d; somewhat shorter than seen in GSs. Equal mass binaries q>0.95 in 30 Dor are all found outside NGC 2070 the very young and massive cluster at 30 Dors core. One outstanding exception however is the fact that earliest spectral types (O2-O7) tend to have shorter OrbPs than latter (O9.2-O9.7). Our results point to a relative universality of the incidence rate of MBs and their OPs in the metallicity range from solar ($Z_{odot}$) to about $0.5Z_{odot}$. This provides the first direct constraints on MB properties in massive star-forming galaxies at the Universes peak of star formation at redshifts z~1 to 2, which are estimated to have $Z~0.5Z_{odot}$.



قيم البحث

اقرأ أيضاً

75 - L. Mahy , L. A. Almeida , H. Sana 2019
A high fraction of massive stars are found to be binaries but only a few of them are reported as photometrically variable. By studying the populations of SB2 in the 30 Doradus region, we found a subset of them that have photometry from the OGLE proje ct and that display variations in their light curves related to orbital motions. The goal of this study is to determine the dynamical masses and radii of the 26 binary components to investigate the mass-discrepancy problem and to provide an empirical mass-luminosity relation for the LMC. We use the PHOEBE programme to perform a systematic analysis of the OGLE V and I light curves obtained for 13 binary systems in 30 Dor. We adopt Teff, and orbital parameters derived previously to obtain the inclinations of the systems and the parameters of the individual components. Three systems display eclipses in their light curves, while the others only display ellipsoidal variations. We classify two systems as over-contact, five as semi-detached, and four as detached. The two remaining systems have uncertain configurations due to large uncertainties on their inclinations. The fact that systems display ellipsoidal variations has a significant impact on the inclination errors. From the dynamical masses, luminosities, and radii, we provide LMC-based empirical mass-luminosity and mass-radius relations, and we compare them to other relations given for the Galaxy, the LMC, and the SMC. These relations differ for different mass ranges, but do not seem to depend on the metallicity regimes. We also compare the dynamical, spectroscopic, and evolutionary masses of the stars in our sample. While the dynamical and spectroscopic masses agree with each other, the evolutionary masses are systematically higher, at least for stars in semi-detached systems. This suggests that the mass discrepancy can be partly explained by past or ongoing interactions between the stars.
Accurate stellar parameters of individual objects in binary systems are essential to constrain the effects of binarity on stellar evolution. These parameters serve as a prerequisite to probing existing and future theoretical evolutionary models. We a im to derive the atmospheric parameters of the 31 SB2s in the TMBM sample. This sample, composed of detached, semi-detached and contact systems with at least one of the components classified as an O star, is an excellent test-bed to study how binarity can impact our knowledge of the evolution of massive stars. 32 epochs of FLAMES/GIRAFFE spectra are analysed using spectral disentangling to construct the individual spectra of 62 components. We apply the CMFGEN atmosphere code to determine their stellar parameters and their He, C and N surface abundances. From these properties, we show that the effects of tides on chemical mixing are limited. Components on longer-period orbits show higher nitrogen enrichment at their surface than those on shorter-period orbits, in contrast to expectations of rotational or tidal mixing, implying that other mechanisms play a role in this process. Components filling their Roche lobe are mass donors. They exhibit higher nitrogen content at their surface and rotate more slowly than their companions. By accreting new material, their companions spin faster and are rejuvenated. Their locations in the N-vsini diagram tend to show that binary products are good candidates to populate the two groups of stars (slowly rotating, nitrogen-enriched and rapidly rotating non-enriched) that cannot be reproduced through single-star population synthesis. This sample is the largest sample of binaries to be studied in such a homogeneous way. The study of these objects gives us strong observational constraints to test theoretical binary evolutionary tracks.
We present the first SB2 orbital solution and disentanglement of the massive Wolf-Rayet binary R145 (P = 159d) located in the Large Magellanic Cloud. The primary was claimed to have a stellar mass greater than 300Msun, making it a candidate for the m ost massive star known. While the primary is a known late type, H-rich Wolf-Rayet star (WN6h), the secondary could not be so far unambiguously detected. Using moderate resolution spectra, we are able to derive accurate radial velocities for both components. By performing simultaneous orbital and polarimetric analyses, we derive the complete set of orbital parameters, including the inclination. The spectra are disentangled and spectroscopically analyzed, and an analysis of the wind-wind collision zone is conducted. The disentangled spectra and our models are consistent with a WN6h type for the primary, and suggest that the secondary is an O3.5 If*/WN7 type star. We derive a high eccentricity of e = 0.78 and minimum masses of M1 sin^3 i ~ M2 sin^3 i ~ 13 +- 2 Msun, with q = M2 / M1 = 1.01 +- 0.07. An analysis of emission excess stemming from a wind-wind collision yields a similar inclination to that obtained from polarimetry (i = 39 +- 6deg). Our analysis thus implies M1 = 53^{+40}_{-20} and M2 = 54^{+40}_{-20} Msun, excluding M1 > 300Msun. A detailed comparison with evolution tracks calculated for single and binary stars, as well as the high eccentricity, suggest that the components of the system underwent quasi-homogeneous evolution and avoided mass-transfer. This scenario would suggest current masses of ~ 80 Msun and initial masses of Mi,1 ~ 105 and Mi,2 ~ 90Msun, consistent with the upper limits of our derived orbital masses, and would imply an age of ~2.2 Myr.
115 - T. Morel , G. Rauw , T. Eversberg 2010
We present preliminary results of a 3-month campaign carried out in the framework of the Mons project, where time-resolved Halpha observations are used to study the wind and circumstellar properties of a number of OB stars.
The VLT-FLAMES Tarantula Survey (VFTS) is an ESO Large Programme that has obtained multi-epoch optical spectroscopy of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). Here we introduce our scientific motivations a nd give an overview of the survey targets, including optical and near-infrared photometry and comprehensive details of the data reduction. One of the principal objectives was to detect massive binary systems via variations in their radial velocities, thus shaping the multi-epoch observing strategy. Spectral classifications are given for the massive emission-line stars observed by the survey, including the discovery of a new Wolf-Rayet star (VFTS 682, classified as WN5h), 2 to the northeast of R136. To illustrate the diversity of objects encompassed by the survey, we investigate the spectral properties of sixteen targets identified by Gruendl & Chu from Spitzer photometry as candidate young stellar objects or stars with notable mid-infrared excesses. Detailed spectral classification and quantitative analysis of the O- and B-type stars in the VFTS sample, paying particular attention to the effects of rotational mixing and binarity, will be presented in a series of future articles to address fundamental questions in both stellar and cluster evolution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا