ترغب بنشر مسار تعليمي؟ اضغط هنا

Confronting spin-3/2 and other new fermions with the muon g-2 measurement

106   0   0.0 ( 0 )
 نشر من قبل Niko Koivunen
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

The new measurement of the muons anomalous magnetic moment released by the Muon g-2 experiment at Fermilab sets strong constraints on the properties of many new particles. Using an effective field theory approach to the interactions of higher-spin fields, we evaluate the contribution of an electrically neutral and colour singlet spin-3/2 fermion to $(g-2)_mu$ and derive the corresponding constraints on its mass and couplings. These constraints are then compared with the ones on spin-1/2 fermions, such as the vector-like leptons that are predicted by various extensions of the Standard Model, the excited leptons which appear in composite models, as well as the charginos and neutralinos of supersymmetric theories. Unlike these new spin-1/2 fermions, the spin-3/2 particles generate only small contributions to the muon anomalous magnetic moment.



قيم البحث

اقرأ أيضاً

We study the constraints imposed by perturbative unitarity on the new physics interpretation of the muon $g-2$ anomaly. Within a Standard Model Effective Field Theory (SMEFT) approach, we find that scattering amplitudes sourced by effective operators saturate perturbative unitarity at about 1 PeV. This corresponds to the highest energy scale that needs to be probed in order to resolve the new physics origin of the muon $g-2$ anomaly. On the other hand, simplified models (e.g.~scalar-fermion Yukawa theories) in which renormalizable couplings are pushed to the boundary of perturbativity still imply new on-shell states below 200 TeV. We finally suggest that the highest new physics scale responsible for the anomalous effect can be reached in non-renormalizable models at the PeV scale.
Recent precise measurement of the electron anomalous magnetic moment (AMM) adds to the longstanding tension of the muon AMM and together strongly point towards physics beyond the Standard Model (BSM). In this work, we propose a solution to both anoma lies in an economical fashion via a light scalar that emerges from a second Higgs doublet and resides in the $mathcal{O}(10)$-MeV to $mathcal{O}(1)$-GeV mass range yielding the right sizes and signs for these deviations due to one-loop and two-loop dominance for the muon and the electron, respectively. A scalar of this type is subject to a number of various experimental constraints, however, as we show, it can remain sufficiently light by evading all experimental bounds and has the great potential to be discovered in the near-future low-energy experiments. The analysis provided here is equally applicable to any BSM scenario for which a light scalar is allowed to have sizable flavor-diagonal couplings to the charged leptons. In addition to the light scalar, our theory predicts the existence of a nearly degenerate charged scalar and a pseudoscalar, which have masses of the order of the electroweak scale. We analyze possible ways to probe new-physics signals at colliders and find that this scenario can be tested at the LHC by looking at the novel process $pp to H^pm H^pm jj to l^pm l^pm j j + {E!!!!/}_{T}$ via same-sign pair production of charged Higgs bosons.
The inverse seesaw mechanism has been claimed to be consistent with existing bounds while accommodating the muon anomalous magnetic moment (g-2). We revisit this idea and review the importance of nonunitarity bounds over the inverse seesaw mechanism, either in the canonical version or when it is embedded in extended gauge theories. We show that, when nonunitarity constraints are brought into place, the inverse seesaw mechanism fails to accommodate the g-2 anomaly.
We show that a unified framework based on an $SU(2)_H$ horizontal symmetry which generates a naturally large neutrino transition magnetic moment and explains the XENON1T electron recoil excess also predicts a positive shift in the muon anomalous magn etic moment. This shift is of the right magnitude to be consistent with the Brookhaven measurement as well as the recent Fermilab measurement of the muon $g-2$. A relatively light neutral scalar from a Higgs doublet with mass near 100 GeV contributes to muon $g-2$, while its charged partner induces the neutrino magnetic moment. We analyze the collider tests of this framework and find that the HL-LHC can probe the entire parameter space of these models.
The present work introduces two possible extensions of the Standard Model Higgs sector. In the first case, the Zee-Babu type model for the generation of neutrino mass is augmented with a scalar triplet and additional singly charged scalar singlets. T he second scenario, on the other hand, generalizes the Type-II seesaw model by replicating the number of the scalar triplets. A $mathbb{Z}_3$ symmetry is imposed in case of both the scenarios, but, allowed to be violated by terms of mass dimension two and three for generating neutrino masses and mixings. We examine how the models so introduced can explain the experimental observation on the muon anomalous magnetic moment. We estimate the two-loop contribution to neutrino mass induced by the scalar triplet, in addition to what comes from the doubly charged singlet in the usual Zee-Babu framework, in the first model. On the other hand, the neutrino mass arises in the usual Type-II fashion in the second model. In addition, the role of the $mathbb{Z}_3$ symmetry in suppressing lepton flavor violation is also elucidated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا