ﻻ يوجد ملخص باللغة العربية
Occlusion is very challenging in pedestrian detection. In this paper, we propose a simple yet effective method named V2F-Net, which explicitly decomposes occluded pedestrian detection into visible region detection and full body estimation. V2F-Net consists of two sub-networks: Visible region Detection Network (VDN) and Full body Estimation Network (FEN). VDN tries to localize visible regions and FEN estimates full-body box on the basis of the visible box. Moreover, to further improve the estimation of full body, we propose a novel Embedding-based Part-aware Module (EPM). By supervising the visibility for each part, the network is encouraged to extract features with essential part information. We experimentally show the effectiveness of V2F-Net by conducting several experiments on two challenging datasets. V2F-Net achieves 5.85% AP gains on CrowdHuman and 2.24% MR-2 improvements on CityPersons compared to FPN baseline. Besides, the consistent gain on both one-stage and two-stage detector validates the generalizability of our method.
Detecting pedestrians, especially under heavy occlusions, is a challenging computer vision problem with numerous real-world applications. This paper introduces a novel approach, termed as PSC-Net, for occluded pedestrian detection. The proposed PSC-N
Pedestrian detection relying on deep convolution neural networks has made significant progress. Though promising results have been achieved on standard pedestrians, the performance on heavily occluded pedestrians remains far from satisfactory. The ma
Pedestrian detection in a crowd is a challenging task due to a high number of mutually-occluding human instances, which brings ambiguity and optimization difficulties to the current IoU-based ground truth assignment procedure in classical object dete
Pedestrian detection has achieved great improvements with the help of Convolutional Neural Networks (CNNs). CNN can learn high-level features from input images, but the insufficient spatial resolution of CNN feature channels (feature maps) may cause
Pedestrian detection in crowd scenes poses a challenging problem due to the heuristic defined mapping from anchors to pedestrians and the conflict between NMS and highly overlapped pedestrians. The recently proposed end-to-end detectors(ED), DETR and