ترغب بنشر مسار تعليمي؟ اضغط هنا

Hybrid Channel Based Pedestrian Detection

81   0   0.0 ( 0 )
 نشر من قبل Hong Wu
 تاريخ النشر 2019
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Pedestrian detection has achieved great improvements with the help of Convolutional Neural Networks (CNNs). CNN can learn high-level features from input images, but the insufficient spatial resolution of CNN feature channels (feature maps) may cause a loss of information, which is harmful especially to small instances. In this paper, we propose a new pedestrian detection framework, which extends the successful RPN+BF framework to combine handcrafted features and CNN features. RoI-pooling is used to extract features from both handcrafted channels (e.g. HOG+LUV, CheckerBoards or RotatedFilters) and CNN channels. Since handcrafted channels always have higher spatial resolution than CNN channels, we apply RoI-pooling with larger output resolution to handcrafted channels to keep more detailed information. Our ablation experiments show that the developed handcrafted features can reach better detection accuracy than the CNN features extracted from the VGG-16 net, and a performance gain can be achieved by combining them. Experimental results on Caltech pedestrian dataset with the original annotations and the improved annotations demonstrate the effectiveness of the proposed approach. When using a more advanced RPN in our framework, our approach can be further improved and get competitive results on both benchmarks.



قيم البحث

اقرأ أيضاً

94 - Jiale Cao , Yanwei Pang , 2016
Pedestrian detection based on the combination of Convolutional Neural Network (i.e., CNN) and traditional handcrafted features (i.e., HOG+LUV) has achieved great success. Generally, HOG+LUV are used to generate the candidate proposals and then CNN cl assifies these proposals. Despite its success, there is still room for improvement. For example, CNN classifies these proposals by the full-connected layer features while proposal scores and the features in the inner-layers of CNN are ignored. In this paper, we propose a unifying framework called Multilayer Channel Features (MCF) to overcome the drawback. It firstly integrates HOG+LUV with each layer of CNN into a multi-layer image channels. Based on the multi-layer image channels, a multi-stage cascade AdaBoost is then learned. The weak classifiers in each stage of the multi-stage cascade is learned from the image channels of corresponding layer. With more abundant features, MCF achieves the state-of-the-art on Caltech pedestrian dataset (i.e., 10.40% miss rate). Using new and accurate annotations, MCF achieves 7.98% miss rate. As many non-pedestrian detection windows can be quickly rejected by the first few stages, it accelerates detection speed by 1.43 times. By eliminating the highly overlapped detection windows with lower scores after the first stage, its 4.07 times faster with negligible performance loss.
Convolutional neural networks (CNN) have enabled significant improvements in pedestrian detection owing to the strong representation ability of the CNN features. Recently, aggregating features from multiple layers of a CNN has been considered as an e ffective approach, however, the same approach regarding feature representation is used for detecting pedestrians of varying scales. Consequently, it is not guaranteed that the feature representation for pedestrians of a particular scale is optimised. In this paper, we propose a Scale-Aware Multi-resolution (SAM) method for pedestrian detection which can adaptively select multi-resolution convolutional features according to pedestrian sizes. The proposed SAM method extracts the appropriate CNN features that have strong representation ability as well as sufficient feature resolution, given the size of the pedestrian candidate output from a region proposal network. Moreover, we propose an enhanced SAM method, termed as SAM+, which incorporates complementary features channels and achieves further performance improvement. Evaluations on the challenging Caltech and KITTI pedestrian benchmarks demonstrate the superiority of our proposed method.
Pedestrian detection in a crowd is a challenging task due to a high number of mutually-occluding human instances, which brings ambiguity and optimization difficulties to the current IoU-based ground truth assignment procedure in classical object dete ction methods. In this paper, we develop a unique perspective of pedestrian detection as a variational inference problem. We formulate a novel and efficient algorithm for pedestrian detection by modeling the dense proposals as a latent variable while proposing a customized Auto Encoding Variational Bayes (AEVB) algorithm. Through the optimization of our proposed algorithm, a classical detector can be fashioned into a variational pedestrian detector. Experiments conducted on CrowdHuman and CityPersons datasets show that the proposed algorithm serves as an efficient solution to handle the dense pedestrian detection problem for the case of single-stage detectors. Our method can also be flexibly applied to two-stage detectors, achieving notable performance enhancement.
Pedestrian detection in crowd scenes poses a challenging problem due to the heuristic defined mapping from anchors to pedestrians and the conflict between NMS and highly overlapped pedestrians. The recently proposed end-to-end detectors(ED), DETR and deformable DETR, replace hand designed components such as NMS and anchors using the transformer architecture, which gets rid of duplicate predictions by computing all pairwise interactions between queries. Inspired by these works, we explore their performance on crowd pedestrian detection. Surprisingly, compared to Faster-RCNN with FPN, the results are opposite to those obtained on COCO. Furthermore, the bipartite match of ED harms the training efficiency due to the large ground truth number in crowd scenes. In this work, we identify the underlying motives driving EDs poor performance and propose a new decoder to address them. Moreover, we design a mechanism to leverage the less occluded visible parts of pedestrian specifically for ED, and achieve further improvements. A faster bipartite match algorithm is also introduced to make ED training on crowd dataset more practical. The proposed detector PED(Pedestrian End-to-end Detector) outperforms both previous EDs and the baseline Faster-RCNN on CityPersons and CrowdHuman. It also achieves comparable performance with state-of-the-art pedestrian detection methods. Code will be released soon.
Multispectral pedestrian detection has attracted increasing attention from the research community due to its crucial competence for many around-the-clock applications (e.g., video surveillance and autonomous driving), especially under insufficient il lumination conditions. We create a human baseline over the KAIST dataset and reveal that there is still a large gap between current top detectors and human performance. To narrow this gap, we propose a network fusion architecture, which consists of a multispectral proposal network to generate pedestrian proposals, and a subsequent multispectral classification network to distinguish pedestrian instances from hard negatives. The unified network is learned by jointly optimizing pedestrian detection and semantic segmentation tasks. The final detections are obtained by integrating the outputs from different modalities as well as the two stages. The approach significantly outperforms state-of-the-art methods on the KAIST dataset while remain fast. Additionally, we contribute a sanitized version of training annotations for the KAIST dataset, and examine the effects caused by different kinds of annotation errors. Future research of this problem will benefit from the sanitized version which eliminates the interference of annotation errors.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا