ترغب بنشر مسار تعليمي؟ اضغط هنا

Role of Exchange Interactions in the Magnetic Response and Intermolecular Recognition of Chiral Molecules

76   0   0.0 ( 0 )
 نشر من قبل Rafael Gutierrez
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The physical origin of the so-called chirality-induced spin selectivity (CISS) effect has puzzled experimental and theoretical researchers over the past few years. Early experiments were interpreted in terms of unconventional spin-orbit interactions mediated by the helical geometry. However, more recent experimental studies have clearly revealed that electronic exchange interactions also play a key role in the magnetic response of chiral molecules in singlet states. In this investigation, we use spin-polarized closed shell density functional theory calculations to address the influence of exchange contributions to the interaction between helical molecules as well as of helical molecules with magnetized substrates. We show that exchange effects result in differences in the interaction properties with magnetized surfaces, shedding light into the possible origin of two recent important experimental results: enantiomer separation and magnetic exchange force microscopy with AFM tips functionalized with helical peptides.

قيم البحث

اقرأ أيضاً

Donors in silicon are now demonstrated as one of the leading candidates for implementing qubits and quantum information processing. Single qubit operations, measurements and long coherence times are firmly established, but progress on controlling two qubit interactions has been slower. One reason for this is that the inter donor exchange coupling has been predicted to oscillate with separation, making it hard to estimate in device designs. We present a multivalley effective mass theory of a donor pair in silicon, including both a central cell potential and the effective mass anisotropy intrinsic in the Si conduction band. We are able to accurately describe the single donor properties of valley-orbit coupling and the spatial extent of donor wave functions, highlighting the importance of fitting measured values of hyperfine coupling and the orbital energy of the $1s$ levels. Ours is a simple framework that can be applied flexibly to a range of experimental scenarios, but it is nonetheless able to provide fast and reliable predictions. We use it to estimate the exchange coupling between two donor electrons and we find a smoothing of its expected oscillations, and predict a monotonic dependence on separation if two donors are spaced precisely along the [100] direction.
Transition-metal interfaces and multilayers are a very promising class of systems to realize nanometer-sized, stable magnetic skyrmions for future spintronic devices. For room temperature applications it is crucial to understand the interactions whic h control the stability of isolated skyrmions. Typically, skyrmion properties are explained by the interplay of pair-wise exchange interactions, the Dzyaloshinskii-Moriya interaction and the magnetocrystalline anisotropy energy. Here, we demonstrate that higher-order exchange interactions -- which have so far been neglected -- can play a key role for the stability of skyrmions. We use an atomistic spin model parametrized from first-principles and compare three different ultrathin film systems. We consider all fourth order exchange interactions and show that in particular the four-site four spin interaction has a giant effect on the energy barrier preventing skyrmion and antiskyrmion collapse into the ferromagnetic state. Our work opens new perspectives to enhance the stability of topological spin structures.
Tetragonal Mn-based Heusler compounds feature rich exchange interactions and exotic topological magnetic textures, such as antiskyrmions, complimented by the chiral-type Hall effects. This makes the material class interesting for device applications. We report the relation of the magnetic exchange interactions to the thickness and Mn concentration of Mn$_{x}$PtSn films, grown by magnetron sputtering. The competition of the magnetic exchange interactions determines the finite temperature magnetic texture and thereby the chiral-type Hall effects in external magnetic fields. We investigate the magnetic and transport properties as a function of magnetic field and temperature. We focus on the anomalous and chiral-type Hall effects and the behavior of the dc-magnetization, in relation to chiral spin textures. We further determine the stable crystal phase for a relative Mn concentration between 1.5 and 1.85 in the $Ioverline{4}2d$ structure. We observe a spin-reorientation transition in all compounds studied, which is due to the competition of exchange interactions on different Mn sublattices. We discuss our results in terms of exchange interactions and compare them with theoretical atomistic spin calculations.
188 - A. Chiesa , T. Guidi , S. Carretta 2021
The discovery of magnetic bistability in Mn$_{12}$ more than 20 years ago marked the birth of molecular magnetism, an extremely fertile interdisciplinary field and a powerful route to create tailored magnetic nanostructures. However, the difficulty t o determine interactions in complex polycentric molecules often prevents their understanding. Mn$_{12}$ is an outstanding example of this difficulty: although it is the forefather and most studied of all molecular nanomagnets, an unambiguous determination of even the leading magnetic exchange interactions is still lacking. Here we exploit four-dimensional inelastic neutron scattering to portray how individual spins fluctuate around the magnetic ground state, thus fixing the exchange couplings of Mn$_{12}$ for the first time. Our results demonstrate the power of four-dimensional inelastic neutron scattering as an unrivaled tool to characterize magnetic clusters.
We examine the effect of decoherence and intermolecular interactions (chiral discrimination energies) on the chiral stability and the distinguishability of initially pure versus mixed states in an open chiral system. Under a two-level approximation f or a system, intermolecular interactions are introduced by a mean-field theory, and interaction between a system and an environment is modeled by a continuous measurement of a population difference between the two chiral states. The resultant equations are explored for various parameters, with emphasis on the combined effects of the initial condition of the system, the chiral discrimination energy and the decoherence. We focus on factors affecting the distinguishability as measured by population difference between the initially pure and mixed states and on the chiral stability as measured by the purity decay.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا