ﻻ يوجد ملخص باللغة العربية
We study the free-surface deformation dynamics of an immersed glassy thin polymer film supported on a substrate, induced by an air nanobubble at the free surface.We combine analytical and numerical treatments of the glassy thin film equation, resulting from the lubrication approximation applied to the surface mobile layer of the glassy film, under the driving of an axisymmetric step function in the pressure term accounting for the nanobubbles Laplace pressure. Using the method of Greens functions, we derive a general solution for the film profile. We show that the lateral extent of the surface perturbation follows an asymptotic viscocapillary power-law behaviour in time, and that the films central height decays logarithmically in time in this regime. This process eventually leads to film rupture and dewetting at finite time, for which we provide an analytical prediction exhibiting explicitly the dependencies in surface mobility, film thickness and bubble size, among others. Finally, using finite-element numerical integration, we discuss how non-linear effects induced by the curvature and film profile can affect the evolution.
The objective of this work is to study the role of shear on the rupture of ultrathin polymer films. To do so, a finite-difference numerical scheme for the resolution of the thin film equation was set up taking into account capillary and van der Waals
We study theoretically and numerically the bending-driven leveling of thin viscous films within the lubrication approximation. We derive the Greens function of the linearized thin-film equation and further show that it represents a universal self-sim
We propose electrically tunable hybrid metamaterial consisting of special wire grid immersed into nematic liquid crystal. The plasma-like permittivity of the structure can be substantially varied due to switching of the liquid crystal alignment by ex
Amorphous glassy materials of diverse nature -- concentrated emulsions, granular materials, pastes, molecular glasses -- display complex flow properties, intermediate between solid and liquid, which are at the root of their use in many applications.
We show that simulations of polymer rheology at a fluctuating mesoscopic scale and at the macroscopic scale where flow instabilities occur can be achieved at the same time with dissipative particle dynamics (DPD) technique.} We model the visco-elasti