ترغب بنشر مسار تعليمي؟ اضغط هنا

Tunability of wire-grid metamaterial immersed into nematic liquid crystal

93   0   0.0 ( 0 )
 نشر من قبل Maxim Gorkunov V
 تاريخ النشر 2007
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We propose electrically tunable hybrid metamaterial consisting of special wire grid immersed into nematic liquid crystal. The plasma-like permittivity of the structure can be substantially varied due to switching of the liquid crystal alignment by external voltages applied to the wires. Depending on the scale of the structure, the effect is available for both microwave and optical frequency ranges.

قيم البحث

اقرأ أيضاً

Soft-elasticity in monodomain liquid crystal elastomers (LCEs) is promising for impact-absorbing applications where strain energy is ideally absorbed at constant stress. Conventionally, compressive and impact studies on LCEs have not been performed g iven the notorious difficulty synthesizing sufficiently large monodomain devices. Here we demonstrate 3D printing bulk ($>cm^3$) monodomain LCE devices using direct ink writing and study their compressive soft-elasticity over 8 decades of strain rate. At quasi-static rates, the monodomain soft-elastic LCE dissipated 45% of strain energy while comparator materials dissipated less than 20%. At strain rates up to $3000~s^{-1}$, our soft-elastic monodomain LCE consistently performed closest to an ideal-impact absorber. Drop testing reveals soft-elasticity as a likely mechanism for effectively reducing the severity of impacts -- with soft elastic LCEs offering a Gadd Severity Index 40% lower than a comparable isotropic elastomer. Lastly, we demonstrate tailoring deformation and buckling behavior in monodomain LCEs via the printed director orientation.
We study the free-surface deformation dynamics of an immersed glassy thin polymer film supported on a substrate, induced by an air nanobubble at the free surface.We combine analytical and numerical treatments of the glassy thin film equation, resulti ng from the lubrication approximation applied to the surface mobile layer of the glassy film, under the driving of an axisymmetric step function in the pressure term accounting for the nanobubbles Laplace pressure. Using the method of Greens functions, we derive a general solution for the film profile. We show that the lateral extent of the surface perturbation follows an asymptotic viscocapillary power-law behaviour in time, and that the films central height decays logarithmically in time in this regime. This process eventually leads to film rupture and dewetting at finite time, for which we provide an analytical prediction exhibiting explicitly the dependencies in surface mobility, film thickness and bubble size, among others. Finally, using finite-element numerical integration, we discuss how non-linear effects induced by the curvature and film profile can affect the evolution.
50 - P.V. Shibaev 2020
Novel liquid crystalline (LC) compositions are suggested and studied as elements of LC-nose. This allows for optical detection of several volatile organic compounds (VOCs). Ethanol, toluene, pyridine and acetic acid were detected by means of colorime tric and spectroscopic techniques during their diffusion inside chiral elements of LC-nose. Selectivity to different VOCs is enhanced by means of components of liquid crystal matrix with different viscosity, affinities to the solvents, and abilities to form hydrogen bonding.
We consider a mathematical model that describes the flow of a Nematic Liquid Crystal (NLC) film placed on a flat substrate, across which a spatially-varying electric potential is applied. Due to their polar nature, NLC molecules interact with the (no nuniform) electric field generated, leading to instability of a flat film. Implementation of the long wave scaling leads to a partial differential equation that predicts the subsequent time evolution of the thin film. This equation is coupled to a boundary value problem that describes the interaction between the local molecular orientation of the NLC (the director field) and the electric potential. We investigate numerically the behavior of an initially flat film for a range of film heights and surface anchoring conditions.
This work investigates how a thermal diode can be designed from a nematic liquid crystal confined inside a cylindrical capillary. In the case of homeotropic anchoring, a defect structure called escaped radial disclination arises. The asymmetry of suc h structure causes thermal rectification rates up to 3.5% at room temperature, comparable to thermal diodes made from carbon nanotubes. Sensitivity of the system with respect the heat power supply, the geometry of the capillary tube and the molecular anchoring angle is also discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا