ﻻ يوجد ملخص باللغة العربية
Dynamical systems with a distributed yet interconnected structure, like multi-rigid-body robots or large-scale multi-agent systems, introduce valuable sparsity into the system dynamics that can be exploited in an optimal control setting for speeding up computation and improving numerical conditioning. Conventional approaches for solving the Optimal Control Problem (OCP) rarely capitalize on such structural sparsity, and hence suffer from a cubic computational complexity growth as the dimensionality of the system scales. In this paper, we present an OCP formulation that relies on graphical models to capture the sparsely-interconnected nature of the system dynamics. Such a representational choice allows the use of contemporary graphical inference algorithms that enable our solver to achieve a linear time complexity in the state and control dimensions as well as the time horizon. We demonstrate the numerical and computational advantages of our approach on a canonical dynamical system in simulation.
The recent works on quadrotor have focused on more and more challenging tasks on increasingly complex systems. Systems are often augmented with slung loads, inverted pendulums or arms, and accomplish complex tasks such as going through a window, gras
In this paper, we investigate a sparse optimal control of continuous-time stochastic systems. We adopt the dynamic programming approach and analyze the optimal control via the value function. Due to the non-smoothness of the $L^0$ cost functional, in
This work addresses the problem of kinematic trajectory planning for mobile manipulators with non-holonomic constraints, and holonomic operational-space tracking constraints. We obtain whole-body trajectories and time-varying kinematic feedback contr
The problem of constrained coverage path planning involves a robot trying to cover maximum area of an environment under some constraints that appear as obstacles in the map. Out of the several coverage path planning methods, we consider augmenting th
We develop optimal control strategies for Autonomous Vehicles (AVs) that are required to meet complex specifications imposed by traffic laws and cultural expectations of reasonable driving behavior. We formulate these specifications as rules, and spe