ﻻ يوجد ملخص باللغة العربية
Molecular ferroelectrics have captured immense attention due to their superiority over inorganic oxide ferroelectrics, such as environmentally friendly, low-cost, flexible, foldable. However, the mechanisms of ferroelectric switching and phase transition for the molecular ferroelectrics are still missing, leaving the development of novel molecular ferroelectrics less efficient. In this work, we have provided a methodology combining molecular dynamics (MD) simulation on a polarized force field named polarized crystal charge (PCC) and enhanced sampling technique, replica-exchange molecular dynamics (REMD) to simulate such mechanisms. With this procedure, we have investigated a promising molecular ferroelectric material, (R)/(S)-3-quinuclidinol crystal. We have simulated the ferroelectric hysteresis loops of both enantiomers and obtained spontaneous polarization of 7/8 mu C cm-2 and a corresponding coercive electric field of 15 kV cm-1. We also find the Curie temperature as 380/385 K for ferro-/para-electric phase transition of both enantiomers. All of the simulated results are highly compatible with experimental values. Besides of that, we predict a novel Curie temperature of about 600 K. This finding is further validated by principal component analysis (PCA). Our work would significantly promote the future exploration of multifunctional molecular ferroelectrics for the next generation of intelligent devices.
We show that the concept of degeneracy is the key idea for understanding the quantum carpet woven by a particle in the box.
The transition between two distinct mechanisms for the laser-induced field-free orientation of CO molecules is observed via measurements of orientation revival times and subsequent comparison to theoretical calculations. In the first mechanism, which
We present an efficient method to shorten the analytic integration-by-parts (IBP) reduction coefficients of multi-loop Feynman integrals. For our approach, we develop an improved version of Leinartas multivariate partial fraction algorithm, and provi
We introduce the wedge diagram, an intuitive way to illustrate how cosmological models with a classical (non-singular) bounce generically resolve fundamental problems in cosmology. These include the well-known horizon, flatness, and inhomogeneity pro
Genetic algorithms, as implemented in optimal control strategies, are currently successfully exploited in a wide range of problems in molecular physics. In this context, laser control of molecular alignment and orientation remains a very promising is