ترغب بنشر مسار تعليمي؟ اضغط هنا

Three-class Overlapped Speech Detection using a Convolutional Recurrent Neural Network

117   0   0.0 ( 0 )
 نشر من قبل Jee-Weon Jung
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In this work, we propose an overlapped speech detection system trained as a three-class classifier. Unlike conventional systems that perform binary classification as to whether or not a frame contains overlapped speech, the proposed approach classifies into three classes: non-speech, single speaker speech, and overlapped speech. By training a network with the more detailed label definition, the model can learn a better notion on deciding the number of speakers included in a given frame. A convolutional recurrent neural network architecture is explored to benefit from both convolutional layers capability to model local patterns and recurrent layers ability to model sequential information. The proposed overlapped speech detection model establishes a state-of-the-art performance with a precision of 0.6648 and a recall of 0.3222 on the DIHARD II evaluation set, showing a 20% increase in recall along with higher precision. In addition, we also introduce a simple approach to utilize the proposed overlapped speech detection model for speaker diarization which ranked third place in the Track 1 of the DIHARD III challenge.



قيم البحث

اقرأ أيضاً

Due to the simple design pipeline, end-to-end (E2E) neural models for speech enhancement (SE) have attracted great interest. In order to improve the performance of the E2E model, the locality and temporal sequential properties of speech should be eff iciently taken into account when modelling. However, in most current E2E models for SE, these properties are either not fully considered or are too complex to be realized. In this paper, we propose an efficient E2E SE model, termed WaveCRN. In WaveCRN, the speech locality feature is captured by a convolutional neural network (CNN), while the temporal sequential property of the locality feature is modeled by stacked simple recurrent units (SRU). Unlike a conventional temporal sequential model that uses a long short-term memory (LSTM) network, which is difficult to parallelize, SRU can be efficiently parallelized in calculation with even fewer model parameters. In addition, in order to more effectively suppress the noise components in the input noisy speech, we derive a novel restricted feature masking (RFM) approach that performs enhancement on the feature maps in the hidden layers; this is different from the approach that applies the estimated ratio mask on the noisy spectral features, which is commonly used in speech separation methods. Experimental results on speech denoising and compressed speech restoration tasks confirm that with the lightweight architecture of SRU and the feature-mapping-based RFM, WaveCRN performs comparably with other state-of-the-art approaches with notably reduced model complexity and inference time.
This paper introduces StutterNet, a novel deep learning based stuttering detection capable of detecting and identifying various types of disfluencies. Most of the existing work in this domain uses automatic speech recognition (ASR) combined with lang uage models for stuttering detection. Compared to the existing work, which depends on the ASR module, our method relies solely on the acoustic signal. We use a time-delay neural network (TDNN) suitable for capturing contextual aspects of the disfluent utterances. We evaluate our system on the UCLASS stuttering dataset consisting of more than 100 speakers. Our method achieves promising results and outperforms the state-of-the-art residual neural network based method. The number of trainable parameters of the proposed method is also substantially less due to the parameter sharing scheme of TDNN.
For dual-channel speech enhancement, it is a promising idea to design an end-to-end model based on the traditional array signal processing guideline and the manifold space of multi-channel signals. We found that the idea above can be effectively impl emented by the classical convolutional recurrent neural networks (CRN) architecture. We propose a very compact in place gated convolutional recurrent neural network (inplace GCRN) for end-to-end multi-channel speech enhancement, which utilizes inplace-convolution for frequency pattern extraction and reconstruction. The inplace characteristics efficiently preserve spatial cues in each frequency bin for channel-wise long short-term memory neural networks (LSTM) tracing the spatial source. In addition, we come up with a new spectrum recovery method by predict amplitude mask, mapping, and phase, which effectively improves the speech quality.
Recurrent neural networks (RNN) are at the core of modern automatic speech recognition (ASR) systems. In particular, long-short term memory (LSTM) recurrent neural networks have achieved state-of-the-art results in many speech recognition tasks, due to their efficient representation of long and short term dependencies in sequences of inter-dependent features. Nonetheless, internal dependencies within the element composing multidimensional features are weakly considered by traditional real-valued representations. We propose a novel quaternion long-short term memory (QLSTM) recurrent neural network that takes into account both the external relations between the features composing a sequence, and these internal latent structural dependencies with the quaternion algebra. QLSTMs are compared to LSTMs during a memory copy-task and a realistic application of speech recognition on the Wall Street Journal (WSJ) dataset. QLSTM reaches better performances during the two experiments with up to $2.8$ times less learning parameters, leading to a more expressive representation of the information.
Naturalistic speech recordings usually contain speech signals from multiple speakers. This phenomenon can degrade the performance of speech technologies due to the complexity of tracing and recognizing individual speakers. In this study, we investiga te the detection of overlapping speech on segments as short as 25 ms using Convolutional Neural Networks. We evaluate the detection performance using different spectral features, and show that pyknogram features outperforms other commonly used speech features. The proposed system can predict overlapping speech with an accuracy of 84% and Fscore of 88% on a dataset of mixed speech generated based on the GRID dataset.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا