ﻻ يوجد ملخص باللغة العربية
Carbon is an essential element for life but its behavior during Earths accretion is not well understood. Carbonaceous grains in meteoritic and cometary materials suggest that irreversible sublimation, and not condensation, governs carbon acquisition by terrestrial worlds. Through astronomical observations and modeling we show that the sublimation front of carbon carriers in the solar nebula, or the soot line, moved inward quickly so that carbon-rich ingredients would be available for accretion at 1 au after the first million years. On the other hand, geological constraints firmly establish a severe carbon deficit in Earth, requiring the destruction of inherited carbonaceous organics in the majority of its building blocks. The carbon-poor nature of the Earth thus implies carbon loss in its precursor material through sublimation within the first million years.
The giant impact hypothesis for Moon formation successfully explains the dynamic properties of the Earth-Moon system but remains challenged by the similarity of isotopic fingerprints of the terrestrial and lunar mantles. Moreover, recent geochemical
Several lines of evidence indicate a non-chondritic composition for Bulk Earth. If Earth formed from the accretion of chondritic material, its non-chondritic composition, in particular the super-chondritic 142Nd/144Nd and low Mg/Fe ratios, might be e
From fairy circles to patterned ground and columnar joints, natural patterns spontaneously appear in many complex geophysical settings. Here, we shed light on the origins of polygonally patterned crusts of salt playa and salt pans. These beautifully
The next step on the path toward another Earth is to find atmospheres similar to those of Earth and Venus - high-molecular-weight (secondary) atmospheres - on rocky exoplanets. Many rocky exoplanets are born with thick (> 10 kbar) H$_2$-dominated atm
Earths carbon deficit has been an outstanding problem in our understanding of the formation of our Solar System. A possible solution would be the sublimation of carbon grains at the so-called soot line (~300 K) early in the planet-formation process.