ترغب بنشر مسار تعليمي؟ اضغط هنا

Salt Polygons are Caused by Convection

59   0   0.0 ( 0 )
 نشر من قبل Lucas Goehring
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

From fairy circles to patterned ground and columnar joints, natural patterns spontaneously appear in many complex geophysical settings. Here, we shed light on the origins of polygonally patterned crusts of salt playa and salt pans. These beautifully regular features, approximately a meter in diameter, are found worldwide and are fundamentally important to the transport of salt and dust in arid regions. We show that they are consistent with the surface expression of buoyancy-driven convection in the porous soil beneath a salt crust. By combining quantitative results from direct field observations, analogue experiments, linear stability theory, and numerical simulations, we further determine the conditions under which salt polygons should form, as well as how their characteristic size emerges.

قيم البحث

اقرأ أيضاً

We study numerically the melting of a horizontal layer of a pure solid above a convecting layer of its fluid rotating about the vertical axis. In the rotating regime studied here, with Rayleigh numbers of order $10^7$, convection takes the form of co lumnar vortices, the number and size of which depend upon the Ekman and Prandtl numbers, as well as the geometry -- periodic or confined. As the Ekman and Rayleigh numbers vary, the number and average area of vortices vary in inverse proportion, becoming thinner and more numerous with decreasing Ekman number. The vortices transport heat to the phase boundary thereby controlling its morphology, characterized by the number and size of the voids formed in the solid, and the overall melt rate, which increases when the lower boundary is governed by a no-slip rather than a stress-free velocity boundary condition. Moreover, the number and size of voids formed are relatively insensitive to the Stefan number, here inversely proportional to the latent heat of fusion. For small values of the Stefan number, the convection in the fluid reaches a slowly evolving geostrophic state wherein columnar vortices transport nearly all the heat from the lower boundary to melt the solid at an approximately constant rate. In this quasi-steady state, we find that the Nusselt number, characterizing the heat flux, co-varies with the interfacial roughness, for all the flow parameters and Stefan numbers considered here. This confluence of processes should influence the treatment of moving boundary problems, particularly those in astrophysical and geophysical problems where rotational effects are important.
Carbon is an essential element for life but its behavior during Earths accretion is not well understood. Carbonaceous grains in meteoritic and cometary materials suggest that irreversible sublimation, and not condensation, governs carbon acquisition by terrestrial worlds. Through astronomical observations and modeling we show that the sublimation front of carbon carriers in the solar nebula, or the soot line, moved inward quickly so that carbon-rich ingredients would be available for accretion at 1 au after the first million years. On the other hand, geological constraints firmly establish a severe carbon deficit in Earth, requiring the destruction of inherited carbonaceous organics in the majority of its building blocks. The carbon-poor nature of the Earth thus implies carbon loss in its precursor material through sublimation within the first million years.
The giant impact hypothesis for Moon formation successfully explains the dynamic properties of the Earth-Moon system but remains challenged by the similarity of isotopic fingerprints of the terrestrial and lunar mantles. Moreover, recent geochemical evidence suggests that the Earths mantle preserves ancient (or primordial) heterogeneity that predates the Moon-forming giant impact. Using a new hydrodynamical method, we here show that Moon-forming giant impacts lead to a stratified starting condition for the evolution of the terrestrial mantle. The upper layer of the Earth is compositionally similar to the disk, out of which the Moon evolves, whereas the lower layer preserves proto-Earth characteristics. As long as this predicted compositional stratification can at least partially be preserved over the subsequent billions of years of Earth mantle convection, the compositional similarity between the Moon and the accessible Earths mantle is a natural outcome of realistic and high-probability Moon-forming impact scenarios. The preservation of primordial heterogeneity in the modern Earth not only reconciles geochemical constraints but is also consistent with recent geophysical observations. Furthermore, for significant preservation of a proto-Earth reservoir, the bulk composition of the Earth-Moon system may be systematically shifted towards chondritic values.
Dry lakes covered with a salt crust organised into beautifully patterned networks of narrow ridges are common in arid regions. Here, we consider the initial instability and the ultimate fate of buoyancy-driven convection that could lead to such patte rns. Specifically, we look at convection in a deep porous medium with a constant through-flow boundary condition on a horizontal surface, which resembles the situation found below an evaporating salt lake. The system is scaled to have only one free parameter, the Rayleigh number, which characterises the relative driving force for convection. We then solve the resulting linear stability problem for the onset of convection. Further exploring the non-linear regime of this model with pseudo-spectral numerical methods, we demonstrate how the growth of small downwelling plumes is itself unstable to coarsening, as the system develops into a dynamic steady state. In this mature state we show how the typical speeds and length-scales of the convective plumes scale with forcing conditions, and the Rayleigh number. Interestingly, a robust length-scale emerges for the pattern wavelength, which is largely independent of the driving parameters. Finally, we introduce a spatially inhomogeneous boundary condition -- a modulated evaporation rate -- to mimic any feedback between a growing salt crust and the evaporation over the dry salt lake. We show how this boundary condition can introduce phase-locking of the downwelling plumes below sites of low evaporation, such as at the ridges of salt polygons.
Highly-efficient solar cells containing lead halide perovskites are expected to revolutionize sustainable energy production in the coming years. Combining these next-generation solar panels with agriculture, can optimize land-use, but brings new risk s in case of leakage into the soil. Perovskites are generally assumed to be toxic because of the lead (Pb), but experimental evidence to support this prediction is scarce. We used Arabidopsis thaliana to test the toxicity of the lead-based perovskite MAPbI3 (MA = CH3NH3) and several of its precursors in plants. Our results show that MAPbI3 severely hampers plant growth at concentrations above 5 microM. Surprisingly, we find that the precursors MAI is equally toxic, while lead-based precursors without iodide are only toxic above 500 microM. These observations reveal that perovskite toxicity at low concentrations is caused by iodide ions specifically, and contrast the widespread idea that lead is the most harmful component. We calculate that iodide toxicity thresholds are likely to reach in the soil upon perovskite leakage, but much less so for lead toxicity thresholds. Hence, this work stresses the importance to further understand and predict harmful effects of iodide-containing perovskites in the environment.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا