ترغب بنشر مسار تعليمي؟ اضغط هنا

How to Accelerate Capsule Convolutions in Capsule Networks

66   0   0.0 ( 0 )
 نشر من قبل Zhenhua Chen
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

How to improve the efficiency of routing procedures in CapsNets has been studied a lot. However, the efficiency of capsule convolutions has largely been neglected. Capsule convolution, which uses capsules rather than neurons as the basic computation unit, makes it incompatible with current deep learning frameworks optimization solution. As a result, capsule convolutions are usually very slow with these frameworks. We observe that capsule convolutions can be considered as the operations of `multiplication of multiple small matrics plus tensor-based combination. Based on this observation, we develop two acceleration schemes with CUDA APIs and test them on a custom CapsNet. The result shows that our solution achieves a 4X acceleration.

قيم البحث

اقرأ أيضاً

234 - Bruno Ferrarini 2019
Machine learning based methods achieves impressive results in object classification and detection. Utilizing representative data of the visual world during the training phase is crucial to achieve good performance with such data driven approaches. Ho wever, it not always possible to access bias-free datasets thus, robustness to biased data is a desirable property for a learning system. Capsule Networks have been introduced recently and their tolerance to biased data has received little attention. This paper aims to fill this gap and proposes two experimental scenarios to assess the tolerance to imbalanced training data and to determine the generalization performance of a model with unfamiliar affine transformations of the images. This paper assesses dynamic routing and EM routing based Capsule Networks and proposes a comparison with Convolutional Neural Networks in the two tested scenarios. The presented results provide new insights into the behaviour of capsule networks.
Understanding morphological types of galaxies is a key parameter for studying their formation and evolution. Neural networks that have been used previously for galaxy morphology classification have some disadvantages, such as not being invariant unde r rotation. In this work, we studied the performance of Capsule Network, a recently introduced neural network architecture that is rotationally invariant and spatially aware, on the task of galaxy morphology classification. We designed two evaluation scenarios based on the answers from the question tree in the Galaxy Zoo project. In the first scenario, we used Capsule Network for regression and predicted probabilities for all of the questions. In the second scenario, we chose the answer to the first morphology question that had the highest user agreement as the class of the object and trained a Capsule Network classifier, where we also reconstructed galaxy images. We achieved promising results in both of these scenarios. Automated approaches such as the one introduced here will greatly decrease the workload of astronomers and will play a critical role in the upcoming large sky surveys.
70 - Jindong Gu , Volker Tresp 2020
Capsule Networks, as alternatives to Convolutional Neural Networks, have been proposed to recognize objects from images. The current literature demonstrates many advantages of CapsNets over CNNs. However, how to create explanations for individual cla ssifications of CapsNets has not been well explored. The widely used saliency methods are mainly proposed for explaining CNN-based classifications; they create saliency map explanations by combining activation values and the corresponding gradients, e.g., Grad-CAM. These saliency methods require a specific architecture of the underlying classifiers and cannot be trivially applied to CapsNets due to the iterative routing mechanism therein. To overcome the lack of interpretability, we can either propose new post-hoc interpretation methods for CapsNets or modifying the model to have build-in explanations. In this work, we explore the latter. Specifically, we propose interpretable Graph Capsule Networks (GraCapsNets), where we replace the routing part with a multi-head attention-based Graph Pooling approach. In the proposed model, individual classification explanations can be created effectively and efficiently. Our model also demonstrates some unexpected benefits, even though it replaces the fundamental part of CapsNets. Our GraCapsNets achieve better classification performance with fewer parameters and better adversarial robustness, when compared to CapsNets. Besides, GraCapsNets also keep other advantages of CapsNets, namely, disentangled representations and affine transformation robustness.
Colorectal cancer, largely arising from precursor lesions called polyps, remains one of the leading causes of cancer-related death worldwide. Current clinical standards require the resection and histopathological analysis of polyps due to test accura cy and sensitivity of optical biopsy methods falling substantially below recommended levels. In this study, we design a novel capsule network architecture (D-Caps) to improve the viability of optical biopsy of colorectal polyps. Our proposed method introduces several technical novelties including a novel capsule architecture with a capsule-average pooling (CAP) method to improve efficiency in large-scale image classification. We demonstrate improved results over the previous state-of-the-art convolutional neural network (CNN) approach by as much as 43%. This work provides an important benchmark on the new Mayo Polyp dataset, a significantly more challenging and larger dataset than previous polyp studies, with results stratified across all available categories, imaging devices and modalities, and focus modes to promote future direction into AI-driven colorectal cancer screening systems. Code is publicly available at https://github.com/lalonderodney/D-Caps .
Standard Convolutional Neural Networks (CNNs) can be easily fooled by images with small quasi-imperceptible artificial perturbations. As alternatives to CNNs, the recently proposed Capsule Networks (CapsNets) are shown to be more robust to white-box attacks than CNNs under popular attack protocols. Besides, the class-conditional reconstruction part of CapsNets is also used to detect adversarial examples. In this work, we investigate the adversarial robustness of CapsNets, especially how the inner workings of CapsNets change when the output capsules are attacked. The first observation is that adversarial examples misled CapsNets by manipulating the votes from primary capsules. Another observation is the high computational cost, when we directly apply multi-step attack methods designed for CNNs to attack CapsNets, due to the computationally expensive routing mechanism. Motivated by these two observations, we propose a novel vote attack where we attack votes of CapsNets directly. Our vote attack is not only effective but also efficient by circumventing the routing process. Furthermore, we integrate our vote attack into the detection-aware attack paradigm, which can successfully bypass the class-conditional reconstruction based detection method. Extensive experiments demonstrate the superior attack performance of our vote attack on CapsNets.

الأسئلة المقترحة

التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا